Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Improved Sobolev inequalities


Author: Robert S. Strichartz
Journal: Trans. Amer. Math. Soc. 279 (1983), 397-409
MSC: Primary 46E35; Secondary 42B10, 43A77, 43A85
DOI: https://doi.org/10.1090/S0002-9947-1983-0704623-6
MathSciNet review: 704623
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a function $ f$ defined on $ {{\mathbf{R}}^n}$, Sobolev's inequality $ \parallel f{\parallel_q} \leqslant c(\parallel \,f\;{\parallel_{p}} + \parallel \nabla f{\parallel_{p}})$, where $ 1 < p < q < \infty $ and $ 1/p - 1/q = 1/n$, can be improved if the Fourier transform $ \hat f$ is assumed to have support in a set $ A$ which satisfies an estimate $ \vert\{ \xi \in A:\vert\vert\xi \vert\vert \leqslant s\} \vert \leqslant c{s^d}$ for some $ d < n$ the improvement being that we can take $ 1/p - 1/q = 1/d$, provided we also assume $ p \leqslant 2 \leqslant q$. Analogous results are proved for other Sobolev inequalities, for embeddings into Lipschitz-Zygmund spaces, and for functions on symmetric spaces whose Fourier expansions are suitably limited. Improved Sobolev inequalities are established locally for solutions of the wave equation. An application to the Radon transform on spheres is given.


References [Enhancements On Off] (What's this?)

  • [1] P. Brenner, $ {L_p} - {L_{p^{\prime}}}$, estimates for Fourier integral operators related to hyperbolic equations, Math. Z. 145 (1975), 251-254. MR 0387819 (52:8658)
  • [2] R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978).
  • [3] M. Cowling, The Kunze-Stein phenomena, Ann. of Math. (2) 107 (1978), 209-234. MR 0507240 (58:22398)
  • [4] S. Helgason, Functions on symmetric spaces, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1973, pp. 101-146. MR 0346429 (49:11154)
  • [5] D. Ragozin, Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc. 150 (1970), 41-53. MR 0410210 (53:13960)
  • [6] -, Approximation theory, absolute convergence, and smoothness of random Fourier series on compact Lie groups, Math. Ann. 219 (1976), 1-11. MR 0410211 (53:13961)
  • [7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)
  • [8] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
  • [9] E. M. Stein and A. Zygmund, Boundedness of translation invariant operators on Hölder and $ {L^p}$ spaces, Ann. of Math. (2) 85 (1967), 337-349. MR 0215121 (35:5964)
  • [10] R. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Soc. 148 (1970), 461-471. MR 0256219 (41:876)
  • [11] -, A priori estimates for the wave equation and some applications, J. Funct. Anal. 5 (1970), 218-235. MR 0257581 (41:2231)
  • [12] -, Invariant pseudo-differential operators on a Lie group, Ann. Scuola Norm. Sup. Pisa 26 (1972), 587-611. MR 0420739 (54:8751)
  • [13] -, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842.
  • [14] -, $ {L^p}$ estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 48 (1981), 699-727. MR 782573 (86k:43008)
  • [15] G. Warner, Harmonic analysis on semi-simple Lie groups. I, II, Springer, Berlin, 1972. MR 0498999 (58:16979)
  • [16] O. V. Besov and S. Nikolskii, Integral representations of functions and imbedding theorems. I, II. Halsted, 1978.
  • [17] S. Nikolskii, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, Berlin and New York, 1975. MR 0374877 (51:11073)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35, 42B10, 43A77, 43A85

Retrieve articles in all journals with MSC: 46E35, 42B10, 43A77, 43A85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0704623-6
Keywords: Sobolev inequality, symmetric space, Radon transform, wave equation
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society