Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Global solvability on two-step compact nilmanifolds


Authors: Jacek M. Cygan and Leonard F. Richardson
Journal: Trans. Amer. Math. Soc. 279 (1983), 537-554
MSC: Primary 22E27; Secondary 22E30, 35A99
DOI: https://doi.org/10.1090/S0002-9947-1983-0709567-1
MathSciNet review: 709567
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply the methods of representation theory of nilpotent Lie groups to study the convergence of Fourier series of smooth global solutions to first order invariant partial differential equations $ Df = g$ in $ {C^\infty }$ of a two-step compact nilmanifold. We show that, under algebraically well-defined conditions on $ D$ in the complexified Lie algebra, smooth infinite-dimensional irreducible solutions, when they exist, satisfy estimates strong enough to guarantee uniform convergence of the irreducible (or primary) Fourier series to a smooth global solution. Such strong estimates are not possible on multidimensional tori.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, Princeton, N.J., 1965. MR 0178246 (31:2504)
  • [2] L. Auslander and J. Brezin, Uniform distribution in solvmanifolds, Adv. in Math. 7 (1971), 111-144. MR 0301137 (46:295)
  • [3] L. Corwin, A representation-theoretic criterion for local solvability of left invariant differential operators on nilpotent Lie groups, Trans. Amer. Math. Soc. 264 (1981), 113-120. MR 597870 (83e:22013)
  • [4] S. Greenfield and N. Wallach, Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc. 31 (1972), 112-114. MR 0296508 (45:5568)
  • [5] -, Remarks on global hypoellipticity, Trans. Amer. Math. Soc. 183 (1973), 153-164. MR 0400313 (53:4148)
  • [6] -, Globally hypoelliptic vector fields, Topology 12 (1973), 247-253. MR 0320502 (47:9039)
  • [7] G. Hardy and E. Wright, An introduction to the theory of numbers, 3rd ed., Oxford Univ. Press, London, 1954. MR 0067125 (16:673c)
  • [8] N. Jacobson, Lie algebras, Interscience, New York, 1962. MR 0143793 (26:1345)
  • [9] A. A. Kirillov, Unitary representation of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), 57-110; English transl., Russian Math. Surveys 17 (1962), 53-104. MR 0142001 (25:5396)
  • [10] A. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9-32; English transl., Amer. Math. Soc. Transl. 38 (1949), 276-307. MR 0028842 (10:507d)
  • [11] R. Penney, Non-elliptic Laplace equations on nilpotent Lie groups (preprint). MR 740896 (86e:22012)
  • [12] L. Richardson, Decomposition of the $ {L^2}$-space of a general compact nilmanifold, Amer. J. Math. 93 (1971), 173-190. MR 0284546 (44:1771)
  • [13] -, Global solvability on compact Heisenberg manifolds, Trans. Amer. Math. Soc. 273 (1982), 309-317. MR 664044 (83k:22022)
  • [14] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1972. MR 0498999 (58:16979)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E27, 22E30, 35A99

Retrieve articles in all journals with MSC: 22E27, 22E30, 35A99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0709567-1
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society