Mean values of subsolutions of elliptic and parabolic equations

Author:
William P. Ziemer

Journal:
Trans. Amer. Math. Soc. **279** (1983), 555-568

MSC:
Primary 35D99; Secondary 35B99, 35J60, 35K55

MathSciNet review:
709568

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Integral averages of weak subsolutions (and supersolutions) in of quasilinear elliptic and parabolic equations are investigated. The important feature is that these integral averages are defined in terms of measures that reflect interesting geometric phenomena. Harnack type inequalities are established in terms of these integral averages.

**[**David R. Adams and Norman G. Meyers,**AM**]*Thinness and Wiener criteria for non-linear potentials*, Indiana Univ. Math. J.**22**(1972/73), 169–197. MR**0316724****[**Herbert Federer,**F**]*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR**0257325****[**Wendell H. Fleming,**Fl**]*Functions whose partial derivatives are measures*, Illinois J. Math.**4**(1960), 452–478. MR**0130338****[**Herbert Federer and William P. Ziemer,**FZ**]*The Lebesgue set of a function whose distribution derivatives are 𝑝-th power summable*, Indiana Univ. Math. J.**22**(1972/73), 139–158. MR**0435361****[**David Gilbarg and Neil S. Trudinger,**GT**]*Elliptic partial differential equations of second order*, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. MR**0473443****[**Ronald Gariepy and William P. Ziemer,**GZ**]*A regularity condition at the boundary for solutions of quasilinear elliptic equations*, Arch. Rational Mech. Anal.**67**(1977), no. 1, 25–39. MR**0492836****[**Olga A. Ladyzhenskaya and Nina N. Ural′tseva,**LU**]*Linear and quasilinear elliptic equations*, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR**0244627****[**Norman G. Meyers,**M**]*Integral inequalities of Poincaré and Wirtinger type*, Arch. Rational Mech. Anal.**68**(1978), no. 2, 113–120. MR**0493308****[**Jürgen Moser,**Mo**]*A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math.**17**(1964), 101–134. MR**0159139****[**Norman G. Meyers and William P. Ziemer,**MZ**]*Integral inequalities of Poincaré and Wirtinger type for BV functions*, Amer. J. Math.**99**(1977), no. 6, 1345–1360. MR**0507433****[**J. Serrín,**S**]*Local behavior of solutions of quasilinear elliptic equations*, Acta Math.**111**(1964), 247-302.**[**Neil S. Trudinger,**T1**]*On Harnack type inequalities and their application to quasilinear elliptic equations*, Comm. Pure Appl. Math.**20**(1967), 721–747. MR**0226198****[**Neil S. Trudinger,**T2**]*Pointwise estimates and quasilinear parabolic equations*, Comm. Pure Appl. Math.**21**(1968), 205–226. MR**0226168****[**William P. Ziemer,**Z1**]*Interior and boundary continuity of weak solutions of degenerate parabolic equations*, Trans. Amer. Math. Soc.**271**(1982), no. 2, 733–748. MR**654859**, 10.1090/S0002-9947-1982-0654859-7**[**William P. Ziemer,**Z2**]*Behavior at the boundary of solutions of quasilinear parabolic equations*, J. Differential Equations**35**(1980), no. 3, 291–305. MR**563383**, 10.1016/0022-0396(80)90030-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35D99,
35B99,
35J60,
35K55

Retrieve articles in all journals with MSC: 35D99, 35B99, 35J60, 35K55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0709568-3

Keywords:
Lebesgue points,
Harnack inequahties,
Moser iteration

Article copyright:
© Copyright 1983
American Mathematical Society