Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Harmonic maps and classical surface theory in Minkowski $ 3$-space


Author: Tilla Klotz Milnor
Journal: Trans. Amer. Math. Soc. 280 (1983), 161-185
MSC: Primary 58E20; Secondary 53C42, 53C50
DOI: https://doi.org/10.1090/S0002-9947-1983-0712254-7
MathSciNet review: 712254
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Harmonic maps from a surface $ S$ with nondegenerate prescribed and induced metrics are characterized, showing that holomorphic quadratic differentials play the same role for harmonic maps from a surface with indefinite prescribed metric as they do in the Riemannian case. Moreover, holomorphic quadratic differentials are shown to arise as naturally on surfaces of constant $ H$ or $ K$ in $ {M^3}$ as on their counterparts in $ {E^3}$. The connection between the sine-Gordon, $ \sinh$-Gordon and $ \cosh$-Gordon equations and harmonic maps is explained. Various local and global results are established for surfaces in $ {M^3}$ with constant $ H$, or constant $ K \ne 0$. In particular, the Gauss map of a spacelike or timelike surface in $ {M^3}$ is shown to be harmonic if and only if $ H$ is constant. Also, $ K$ is shown to assume values arbitrarily close to $ {H^2}$ on any entire, spacelike surface in $ {M^3}$ with constant $ H$, except on a hyperbolic cylinder.


References [Enhancements On Off] (What's this?)

  • [1] J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Dekker, New York, 1981. MR 619853 (82i:53051)
  • [2] L. Bers, Quasiconformal mappings and Teichmüller's theorem (Analytic Functions Conf.), Princeton Univ. Press, Princeton, N.J., 1960, pp. 89-119. MR 0114898 (22:5716)
  • [3] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Appl. Math. 15 (1968), 223-230. MR 0264210 (41:8806)
  • [4] S. Y. Cheng and S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2) 104 (1976), 407-419. MR 0431061 (55:4063)
  • [5] S. S. Chern, Geometrical interpretation of the $ \sinh $-Gordon equation, Ann. Polon. Math. 39 (1980), 74-80. MR 617450 (82i:58034)
  • [6] S. S. Chern and S. I. Golberg, On the volume decreasing properties of a class of real harmonic mappings, Amer. J. Math. 97 (1975), 133-147. MR 0367860 (51:4102)
  • [7] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. MR 495450 (82b:58033)
  • [8] L. Graves and K. Nomizu, On sectional curvature of indefinite metrics, Math. Ann. 232 (1978), 267-272. MR 0478082 (57:17575)
  • [9] C. H. Gu, On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space, Comm. Pure Appl. Math. 33 (1980), 727-738. MR 596432 (82g:58027)
  • [10] D. Hoffman and R. Osserman, The area of the generalized Gaussian image and the stability of minimal surfaces in $ {S^n}$ and $ {R^n}$, Math. Ann. (to appear). MR 670192 (84a:53006)
  • [11] H. Hopf and W. Rinow, Über den Bergriff der vollständigen differential-geometrischen Fläche, Comment. Math. Helv. 3 (1931), 209-225. MR 1509435
  • [12] H. Hopf, Über Flächen mit einer Relation zwischen den Hauptkrummungen, Math. Nachr. 4 (1951), 232-249. MR 0040042 (12:634f)
  • [13] T. Klotz, Some uses of the second conformal structure on strictly convex surfaces, Proc. Amer. Math. Soc. 14 (1963), 1281-1288. MR 0152946 (27:2917)
  • [14] -, Surfaces harmonically immersed in $ {E^3}$, Pacific J. Math. 21 (1967), 78-87. MR 0232321 (38:646)
  • [15] T. Klotz and R. Osserman, Complete surfaces in $ {E^3}$ with constant mean curvature, Comment. Math. Helv. 41 (1966-67), 313-318. MR 0211332 (35:2213)
  • [16] T. K. Milnor, Efimov's theorem about complete immersed surfaces of negative curvature, Advances in Math. 8 (1972), 474-543. MR 0301679 (46:835)
  • [17] -, The curvature of $ \alpha {\text{I}} + \beta {\text{II}} + \gamma {\text{III}}$ on a surface in a $ 3$-manifold of constant curvature, Michigan Math. J. 22 (1975), 247-255. MR 0402653 (53:6469)
  • [18] -, Harmonically immersed surfaces, J. Differential Geom. 14 (1979), 205-214. MR 587548 (81j:58039)
  • [19] -, Codazzi pairs on surfaces, Global Differential Geometry an Global Analysis, Lecture Notes in Math., vol. 838, Springer-Verlag, Berlin and New York, 1981, 263-273.
  • [20] -, Abstract Weingarten surfaces, J. Differential Geom. 15 (1980), 365-380. MR 620893 (82i:53048)
  • [21] -, Mapping surfaces harmonically into $ {E^n}$, Proc. Amer. Math. Soc. 78 (1980), 269-275. MR 550511 (81a:53033)
  • [22] -, The energy-1 metric on harmonically immersed surfaces, Michigan Math. J. 28 (1981), 341-346. MR 629366 (82j:53101)
  • [23] -, Classifying harmonic maps of a surface in $ {E^n}$, Amer. J. Math. 103 (1981), 211-218. MR 648466 (83i:58036)
  • [24] -, Are harmomically immersed surfaces at all like minimally immersed surfaces?, Seminar on Minimal Submanifolds, (E. Bombieri, editor), Ann. of Math. Studies (to appear).
  • [25] -, Characterizing harmonic immersions of surfaces with indefinite metric, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), 2143-2144. MR 648910 (83a:58032)
  • [26] -, Surfaces in Minkowski $ 3$-space on which $ H$ and $ K$ are linearly related (preprint).
  • [27] C. W. Misner, Harmonic maps as models for physical theories, Phys. Rev. D 18 (1978), 4510-4524. MR 516792 (80a:81078)
  • [28] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1982.
  • [29] K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 207-221. MR 0408535 (53:12299)
  • [30] P. K. Raschewski, Riemannsche Geometrie und Tensoranalysis, VEB Deutsch. Verlag Wiss., Berlin, 1959. MR 0103490 (21:2258)
  • [31] E. H. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573. MR 0259768 (41:4400)
  • [32] G. Springer, An introduction to Riemann surfaces, Addison-Wesley, Reading, Mass., 1957. MR 0092855 (19:1169g)
  • [33] D. J. Struik, Lectures on classical differential geometry, Addison-Wesley, Reading, Mass., 1950. MR 0036551 (12:127f)
  • [34] A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math. (to appear). MR 652645 (83h:53080)
  • [35] B. Wegner, Codazzi-tensoren und Kennzeichungen sphärischer immersionen, J. Differential Geom. 9 (1974), 61-70. MR 0362158 (50:14600)
  • [36] J. A. Wolf, Surfaces of constant mean curvature, Proc. Amer. Math. Soc. 17 (1966), 1103-1111. MR 0200879 (34:765)
  • [37] -, Spaces of constant curvature, 4th ed., Publish or Perish, Berkeley, Calif., 1977.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E20, 53C42, 53C50

Retrieve articles in all journals with MSC: 58E20, 53C42, 53C50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0712254-7
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society