Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Convolution theorems with weights


Author: R. A. Kerman
Journal: Trans. Amer. Math. Soc. 280 (1983), 207-219
MSC: Primary 42B99; Secondary 42A85
DOI: https://doi.org/10.1090/S0002-9947-1983-0712256-0
MathSciNet review: 712256
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Analogues of Young's Inequality and the Convolution Theorem are shown to hold when the $ {L_p}$ and $ L(p,q)$ spaces have underlying measure defined in terms of power weights.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Blozinski, On a convolution theorem for $ L(p,q)$ spaces, Trans. Amer. Math. Soc. 164 (1972), 255-265. MR 0415293 (54:3383)
  • [2] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. MR 0167830 (29:5097)
  • [3] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, London, 1934.
  • [4] R. A. Hunt, On $ L(p,q)$ spaces, Enseign. Math. (2) 12 (1966), 249-276. MR 0223874 (36:6921)
  • [5] G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55. MR 0033449 (11:442d)
  • [6] G. O. Okikiolu, Aspects of the theory of bounded integral operators on $ {L^p}$-spaces, Academic Press, New York, 1970.
  • [7] R. O'Neil, Convolution operators and $ L(p,q)$ spaces, Duke Math. J. 30 (1963), 129-142. 8. E. M. Stein and G. Weiss, Fractional integrals on $ n$-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503-514. MR 0146673 (26:4193)
  • [9] -, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172. MR 0092943 (19:1184d)
  • [10] -, An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8 (1959), 263-284. MR 0107163 (21:5888)
  • [11] L. Y. H. Yap, Some remarks on convolution operators and $ L(p,q)$ spaces, Duke Math. J. 36 (1969), 647-658. MR 0249943 (40:3184)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B99, 42A85

Retrieve articles in all journals with MSC: 42B99, 42A85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0712256-0
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society