Convolution theorems with weights

Author:
R. A. Kerman

Journal:
Trans. Amer. Math. Soc. **280** (1983), 207-219

MSC:
Primary 42B99; Secondary 42A85

DOI:
https://doi.org/10.1090/S0002-9947-1983-0712256-0

MathSciNet review:
712256

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Analogues of Young's Inequality and the Convolution Theorem are shown to hold when the and spaces have underlying measure defined in terms of power weights.

**[1]**A. P. Blozinski,*On a convolution theorem for**spaces*, Trans. Amer. Math. Soc.**164**(1972), 255-265. MR**0415293 (54:3383)****[2]**A. P. Calderón,*Intermediate spaces and interpolation, the complex method*, Studia Math.**24**(1964), 113-190. MR**0167830 (29:5097)****[3]**G. H. Hardy, J. E. Littlewood and G. Polya,*Inequalities*, Cambridge Univ. Press, London, 1934.**[4]**R. A. Hunt,*On**spaces*, Enseign. Math. (2)**12**(1966), 249-276. MR**0223874 (36:6921)****[5]**G. G. Lorentz,*Some new functional spaces*, Ann. of Math. (2)**51**(1950), 37-55. MR**0033449 (11:442d)****[6]**G. O. Okikiolu,*Aspects of the theory of bounded integral operators on*-*spaces*, Academic Press, New York, 1970.**[7]**R. O'Neil,*Convolution operators and**spaces*, Duke Math. J.**30**(1963), 129-142. 8. E. M. Stein and G. Weiss,*Fractional integrals on*-*dimensional Euclidean space*, J. Math. Mech.**7**(1958), 503-514. MR**0146673 (26:4193)****[9]**-,*Interpolation of operators with change of measures*, Trans. Amer. Math. Soc.**87**(1958), 159-172. MR**0092943 (19:1184d)****[10]**-,*An extension of a theorem of Marcinkiewicz and some of its applications*, J. Math. Mech.**8**(1959), 263-284. MR**0107163 (21:5888)****[11]**L. Y. H. Yap,*Some remarks on convolution operators and**spaces*, Duke Math. J.**36**(1969), 647-658. MR**0249943 (40:3184)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42B99,
42A85

Retrieve articles in all journals with MSC: 42B99, 42A85

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0712256-0

Article copyright:
© Copyright 1983
American Mathematical Society