Convolution theorems with weights

Author:
R. A. Kerman

Journal:
Trans. Amer. Math. Soc. **280** (1983), 207-219

MSC:
Primary 42B99; Secondary 42A85

MathSciNet review:
712256

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Analogues of Young's Inequality and the Convolution Theorem are shown to hold when the and spaces have underlying measure defined in terms of power weights.

**[1]**A. P. Blozinski,*On a convolution theorem for 𝐿(𝑝,𝑞) spaces*, Trans. Amer. Math. Soc.**164**(1972), 255–265. MR**0415293**, 10.1090/S0002-9947-1972-0415293-1**[2]**A.-P. Calderón,*Intermediate spaces and interpolation, the complex method*, Studia Math.**24**(1964), 113–190. MR**0167830****[3]**G. H. Hardy, J. E. Littlewood and G. Polya,*Inequalities*, Cambridge Univ. Press, London, 1934.**[4]**Richard A. Hunt,*On 𝐿(𝑝,𝑞) spaces*, Enseignement Math. (2)**12**(1966), 249–276. MR**0223874****[5]**G. G. Lorentz,*Some new functional spaces*, Ann. of Math. (2)**51**(1950), 37–55. MR**0033449****[6]**G. O. Okikiolu,*Aspects of the theory of bounded integral operators on*-*spaces*, Academic Press, New York, 1970.**[7]**Richard O’Neil,*Convolution operators and 𝐿(𝑝,𝑞) spaces*, Duke Math. J.**30**(1963), 129–142. MR**0146673****[9]**E. M. Stein and G. Weiss,*Interpolation of operators with change of measures*, Trans. Amer. Math. Soc.**87**(1958), 159–172. MR**0092943**, 10.1090/S0002-9947-1958-0092943-6**[10]**E. M. Stein and Guido Weiss,*An extension of a theorem of Marcinkiewicz and some of its applications*, J. Math. Mech.**8**(1959), 263–284. MR**0107163****[11]**Leonard Y. H. Yap,*Some remarks on convolution operators and 𝐿(𝑝,𝑞) spaces*, Duke Math. J.**36**(1969), 647–658. MR**0249943**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42B99,
42A85

Retrieve articles in all journals with MSC: 42B99, 42A85

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0712256-0

Article copyright:
© Copyright 1983
American Mathematical Society