Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A topological group having no homeomorphisms other than translations


Author: Jan van Mill
Journal: Trans. Amer. Math. Soc. 280 (1983), 491-498
MSC: Primary 22A05; Secondary 54G20, 57S99, 58B25
DOI: https://doi.org/10.1090/S0002-9947-1983-0716833-2
MathSciNet review: 716833
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a (separable metric) connected and locally connected topological group, the only autohomeomorphisms of which are group translations.


References [Enhancements On Off] (What's this?)

  • [1] R. D. Anderson, The algebraic simplicity of certain groups of homeomorphisms, Amer. J. Math. 80 (1958), 955-963. MR 0098145 (20:4607)
  • [2] W. Barit and P. Renaud, There are no uniquely homogeneous spaces, Proc. Amer. Math. Soc. 68 (1978), 385-386. MR 0464187 (57:4122)
  • [3] C. Bessaga and A. Pelczyński, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
  • [4] C. E. Burgess, Homogeneous continua, Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Univ. Wisconsin, 1955, pp. 75-78.
  • [5] T. Dobrowolski and H. Toruńczyk, Separable complete $ ANR's$ admitting a group structure are Hilbert manifolds. Topology Appl. 21 (1981), 229-235. MR 623731 (83a:58007)
  • [6] E. K. van Douwen, A compact space with a measure that knows which sets are homeomorphic, Adv. Math, (to appear).
  • [7] B. Dushnik and E. W. Miller, Concerning similarity transformations of linearly ordered sets, Bull. Amer. Math. Soc. 46 (1940), 322-326. MR 0001919 (1:318g)
  • [8] E. G. Effros, Transformation groups and $ C$-algebras, Ann. of Math. (2) 81 (1965), 38-55. MR 0174987 (30:5175)
  • [9] A. Glass, Y. Gurevich, W. Holland and S. Shelah, Rigid homogeneous chains. Math. Proc. Cambridge Philos. Soc. 89 (1981), 7-17. MR 591966 (82c:06001)
  • [10] J. de Groot, Groups represented by homeomorphism groups, Math. Ann. 138 (1959), 80-102. MR 0119193 (22:9959)
  • [11] J. de Groot and R. J. Wille, Rigid continua and topological group-pictures. Arch. Math. (Basel) 9 (1958), 441-446. MR 0101514 (21:324)
  • [12] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N.J., 1950. MR 0033869 (11:504d)
  • [13] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914.
  • [14] K. Kuratowski, Sur la puissance de l'ensemble des "nombres de dimension" de M. Fréchet, Fund. Math. 34 (1925), 201-208.
  • [15] M. Lavrentieff, Contribution à la théorie des ensembles homéomorphes, Fund. Math. 8 (1925), 201-208.
  • [16] J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math. Soc. 84 (1982), 143-148. MR 633296 (83e:54033)
  • [17] -, Homogeneous subsets of the real line which do not admit the structure of a topological group, Indag. Math. 44 (1982), 37-43. MR 653454 (83h:22005)
  • [18] -, Representing countable groups by homeomorphism groups in Hilbert space. Math. Ann. 259 (1982), 321-329. MR 661200 (83k:57030)
  • [19] T. Ohkuma, Sur quelques ensembles ordonnés linéairement, Fund. Math. 43 (1955), 326-337. MR 0084486 (18:868c)
  • [20] J. Roitman, The measure of rigidly homogeneous chains (to appear).
  • [21] W. Sierpiński, Un théorème sur les continus, Tôhoku Math. J. (2) 13 (1918), 300-303.
  • [22] G. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975), 393-400. MR 0385825 (52:6684)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22A05, 54G20, 57S99, 58B25

Retrieve articles in all journals with MSC: 22A05, 54G20, 57S99, 58B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0716833-2
Keywords: Topological group, homeomorphism, unique homogeneity
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society