REAL VS. COMPLEX RATIONAL CHEBYSHEV APPROXIMATION
ON AN INTERVAL

BY

LLOYD N. TREFETHEN1 AND MARTIN H. GUTKNECHT

ABSTRACT. If \(f \in C[-1, 1] \) is real-valued, let \(E'(f) \) and \(E^c(f) \) be the errors in best approximation to \(f \) in the supremum norm by rational functions of type \((m, n) \) with real and complex coefficients, respectively. It has recently been observed that \(E'(f) < E^c(f) \) can occur for any \(n \geq 1 \), but for no \(n \geq 1 \) is it known whether \(\gamma_{mn} = \inf_f E^c(f)/E'(f) \) is zero or strictly positive. Here we show that both are possible: \(\gamma_{01} > 0 \), but \(\gamma_{mn} = 0 \) for \(n \geq m + 3 \). Related results are obtained for approximation on regions in the plane.

1. Introduction. Let \(I \) be the unit interval \([-1, 1]\), \(C \) the set of continuous real functions on \(I \), and \(\| \cdot \| \) the supremum norm \(\| f \| = \sup_{x \in I} |f(x)| \). For nonnegative integers \(m \) and \(n \), let \(R_{mn} \) and \(R^c_{mn} \subseteq R_{mn} \) be the spaces of rational functions of type \((m, n) \) with coefficients in \(\mathbb{C} \) and \(\mathbb{R} \), respectively. For \(f \in C \), let \(E^c(f) \) and \(E'(f) \) denote the infima

\[
E^c(f) = \inf_{r \in R_{mn}} \| f - r \|, \quad E'(f) = \inf_{r \in R^c_{mn}} \| f - r \|.
\]

It is known that both limits are attained, and a function that does so is called a best approximation (BA) to \(f \). In the real case the BA is unique [8], and in the complex case for \(n \geq 1 \) in general it is not [7, 10, 11, 14, 15].

Obviously \(E^c \leq E' \) for any \(f \), but since \(f \) is real, it is not at first obvious whether a strict inequality can occur. However in 1971 Lungu [7], following a proposal of Gončar [16], published a class of examples showing that \(E'(f) < E^c(f) \) is indeed possible if \(n \geq 1 \). Independently, Saff and Varga [10, 11] made the same discovery in 1977, and obtained more general sufficient conditions for \(E^c(f) < E'(f) \) and also a sufficient condition for \(E^c(f) = E'(f) \). The former was later sharpened by Ruttan [18] to the following statement: \(E^c(f) < E'(f) \) must hold if the best real approximation to \(f \) attains its maximum error on no alternation set of length greater than \(m + n + 1 \) points. For a survey of such results, see [14].

But is \(E^c \) ever much less than \(E' \)? If \(\gamma_{mn} \) denotes the infimum

\[
\gamma_{mn} = \inf_{f \in C \setminus R^c_{mn}} E^c(f)/E'(f),
\]

then one would like to know whether \(\gamma_{mn} \) can be zero or is always positive, and if the latter, how small it is. In all of the examples devised to date, \(E^c(f)/E'(f) \) has fallen...
in the range \((\frac{1}{2}, 1]\), suggesting that \(\gamma_{mn} = \frac{1}{2}\) might be the minimum value. Saff and Varga posed in particular the question, is \(\gamma_{mn}\) positive or zero [10, 11]? Ellacott has suggested that \(\gamma_{nn} = \frac{1}{2}\) may hold for \(m \geq n\) [3]. (For more on his argument see §2.) Some partial results for \((m, n) = (1, 1)\) have been obtained by Bennet, et al. [1, 2] and by Ruttan [9].

In this paper we resolve some of these questions, as follows. First, not only can \(\gamma_{mn} < \frac{1}{2}\) occur, but \(\gamma_{mn} = 0\) for all \(m \geq 0, n \geq m + 3\) (Theorem 1). Second, \(\gamma_{01} > 0\) (Theorem 2). We conjecture that \(\gamma_{mn} > 0\) holds whenever \(n < m + 3\). Finally, at least some of our arguments extend to approximation on complex regions, and we show: \(\gamma_{nn}^\Delta = 0\) for \(n \geq 4\) in approximation on the unit disk \(\Delta\) (Theorem 3). A similar result is obtained for approximation on a symmetric Jordan region.

2. \(\gamma_{mn} = 0\) for \(n \geq m + 3\).

Theorem 1. \(\gamma_{mn} = 0\) for all \(m \geq 0, n \geq m + 3\).

Proof. The idea of the construction is indicated in Figure 1, where crosses represent poles and circles represent zeros.

![Figure 1](image_url)

Given \(m \geq 0\), let \(\phi \in \mathbb{R}_{m,n+3}\) be defined by

\[
\phi(x) = \frac{\varepsilon \Pi_{j=1}^{m} \left((-1 + (2j - 1)e) - x\right)}{[x + (1 + e)][i\varepsilon - x][(1 + e) - x]}
\]

and as the function in \(C^r\) to be approximated take \(f(x) = \text{Re } \phi(x)\). We will show that \(f\) has the following two properties:

(a) \(\|f - \phi\| = ||\text{Im } \phi|| = O(\varepsilon)\) as \(\varepsilon \to 0\).

(b) There exists a constant \(C > 0\) such that for all sufficiently small \(\varepsilon\),

\[
(-1)^j f(-1 + 2je) \geq C, \quad 0 \leq j \leq m,
\]

and

\[
(-1)^{m+1} f(1) \geq C.
\]

Condition (b) states that the error function for the zero approximation to \(f\) approximately equioscillates at \(m + 2\) points, and by the de la Vallée Poussin theorem for real rational approximation [8, Theorem 98], this implies \(E^r \geq C\). (For the purposes of this theorem \(r \equiv 0\) has rational type \((\mu, \nu) = (-\infty, 0)\), so the "defect" \(d = \min(m - \mu, n - \nu)\) is \(n\), which means one needs approximate equioscillation at \(m + n + 2 - d = m + 2\) points.) On the other hand if \(n \geq m + 3\), then \(\phi \in \mathbb{R}_{mn}\), so (a) implies \(E^r = O(\varepsilon)\). Thus since \(\varepsilon\) can be arbitrarily small, the theorem will be proved once (a) and (b) are established.
Proof of (a). Let us write ϕ as a product of three functions ϕ_1, ϕ_2, ϕ_3 corresponding to the poles and zeros near $-1, 0, \text{and} 1$, respectively. Of these functions only ϕ_2 has a nonzero imaginary part on I, and we bring this into the numerator. The factor ϕ_1 gets the constant ϵ from (3):

$$\phi(x) = \phi_1(x)\phi_2(x)\phi_3(x)$$

$$= \left(\frac{\epsilon \prod_{j=1}^{m} \left[(-1 + (2j-1)\epsilon) - x \right]}{\prod_{j=1}^{m} \left[x + (1 + \epsilon) \right]} \right) \left(\frac{-i\epsilon - x}{x^2 + \epsilon} \right) \left(\frac{1}{(1 + \epsilon) - x} \right).$$

Since $(f - \phi)(x) = -i \text{Im} \phi(x)$, we compute

$$(f - \phi)(x) = -i\phi_1(x)\text{Im} \phi_2(x)\phi_3(x) = \phi_1(x)\frac{-i\epsilon}{x^2 + \epsilon} \phi_3(x).$$

It is not hard to see that on $[-1, -\frac{1}{2}]$ these factors have magnitude $O(1)$, $O(\sqrt{\epsilon})$, and $O(1)$, so their product is $O(\sqrt{\epsilon})$. Similarly in $[-\frac{1}{2}, \frac{1}{2}]$ one has $O(\epsilon) O(1/\sqrt{\epsilon}) O(1) = O(\sqrt{\epsilon})$, and in $[\frac{1}{2}, 1]$, $O(\epsilon) O(\sqrt{\epsilon}) O(1/\epsilon) = O(\sqrt{\epsilon})$. Together these estimates give $(f - \phi)(x) = O(\sqrt{\epsilon})$ for all $x \in I$, as claimed.

Proof of (b). Again we use the factorization $\phi = \phi_1\phi_2\phi_3$ of (6). Let $\{x_j\}_{j=0}^m$ be the set of points $x_j = -1 + 2je$ that appear in condition (4). At each x_j, ϕ_1 evidently takes the form $\alpha_j e^{x_j} + \beta_j e^{-x_j}$ for some constants α_j and β_j, and thus $\phi_1(x_j)$ is independent of ϵ. Moreover these quantities obviously alternate in sign, i.e.

$$\phi_1(x_0) = \tau_0 > 0, \quad \phi_1(x_1) = \tau_1 > 0, \ldots, \quad (-1)^m \phi_1(x_m) = \tau_m > 0,$$

with τ_j independent of ϵ. In addition since all of the points x_j are contained in $[-1, -1 + 2me]$ we have $\phi_2(x_j) = 1 + O(\sqrt{\epsilon})$, $\phi_3(x_j) = \frac{1}{2} + O(\epsilon)$ on $\{x_j\}$. Together these facts establish (4) for some $C = C_1 > 0$.

For condition (5) we compute

$$\phi(1) = \phi_1(1)\phi_2(1)\phi_3(1)$$

$$= \left(\frac{\epsilon}{2} (-1)^m (1 + O(\epsilon)) \right) \left(-1 + O(\sqrt{\epsilon}) \right) \frac{1}{\epsilon} = \frac{1}{2} (-1)^{m+1} + O(\sqrt{\epsilon}),$$

which implies that (5) holds for $C = C_2$ with any $C_2 < \frac{1}{2}$. Taking $C = \min(C_1, C_2)$ now yields (b). \(\Box\)

Remark on an argument of Ellacott. As alluded to in the Introduction, Ellacott has observed that one can conclude from the CF method [13, 4] that if p is a polynomial of degree $m + 1$, then

$$E'(p)/E(p) \geq \frac{1}{2}$$

for $n \leq m$ [3]. This is one of his arguments for suggesting that $\gamma_{mn} = \frac{1}{2}$ or at least $\gamma_{mn} > 0$ may hold for $n \leq m$. However we claim that (7) is valid in fact for all $n \leq 2m + 1$, which by Theorem 1 means that it holds even in many cases with $\gamma_{mn} = 0$. Therefore although Ellacott's conjecture is plausible, it appears that (7) does not provide very strong support for it.
To demonstrate that (7) holds for \(n \leq 2m + 1 \), let \(p \) be transplanted to the unit circle by defining a function \(\hat{p} \) for \(z \in \mathbb{C} \) as follows:

\[
x = \frac{1}{2}(z + z^{-1}), \quad \hat{p}(z) = p(x) = p\left(\frac{1}{2}z + \frac{1}{2}z^{-1}\right) = \sum_{k=-m}^{m+1} \alpha_k z^k.
\]

For \(n \leq 2m + 1 \), the BA to \(p \) in \(R_{mn}^r \) on \(I \) was obtained explicitly by Talbot [12, 5], and its deviation from \(p \) is

(8) \[E'(p) = 2\sigma_n, \]

where \(\sigma_n \) is the smallest singular value of the \((n + 1) \times (n + 1)\) Hankel matrix \((\alpha_{m-n+1+i+j})_{i,j=0}^n\). On the other hand if \(r \in R_{mn}^r \) is any complex approximation to \(p \) on \(I \), consider the transplanted function \(\hat{r} \) defined by \(\hat{r}(z) = r(x) \). It is readily verified that \(\hat{r} \) has \(v \) \(n \) poles in \(1 < |z| < \infty \) and is of order \(O(z^{-v}) \) at \(\infty \). Therefore \(\hat{r} \) lies in the space \(\hat{R}_{mn}^r \) defined in [13, 4], and by the theory given there this implies

\[
\sigma_n \leq \sup_{|z| = 1} |(\hat{p} - \hat{r})(z)| = \sup_{|x| = 1} |(p - r)(x)|.
\]

Thus

(9) \[E^c(p) \geq \sigma_n, \]

which together with (8), establishes (7).

By applying [4, Lemma 5.1 in Part II] (7) can be seen to hold even for some rational functions \(f \), namely for those of exact type \((M, N)\) where either \(M \leq m + 1 \), \(N = n + 1 \), \(n \leq m \) or \(M = m + 1 \), \(N = n + 1 \), \(n \leq 2m + 1 - N \); details will be given in [5].

3. \(\gamma_0 > 0 \).

THEOREM 2. \(\gamma_0 > 0 \).

PROOF. Let \(f \in C' \) be arbitrary, and let \(c^* \) be a BA to \(f \) in \(R_{mn}^r \). Then for any \(r \in R_{mn}^r \) one has \(\|\text{Im} c^*\| \leq \|f - c^*\| = E'(f) \) and \(E'(f) \leq E^c(f) + \|c^* - r\| \), and therefore

(10) \[E'(f) \leq E^c(f) + \|\text{Im} c^*\| \frac{\|c^* - r\|}{\|\text{Im} c^*\|} \leq E^c(f) \left(1 + \frac{\|c^* - r\|}{\|\text{Im} c^*\|}\right).\]

Now suppose that for any \(c \in R_{mn} \setminus R_{mn}^r \) with no poles on \(I \), one can find \(r^{(c)} \in R_{mn}^r \) such that

(11) \[\|c - r^{(c)}\|/\|\text{Im} c\| \leq M \]

for some fixed \(M \). Then \(r^{(c)} \) can be inserted in (10), independent of \(f \), and one obtains \(\gamma_{mn} \geq 1/(1 + M) \). Our proof of \(\gamma_0 > 0 \) consists of exhibiting a mapping \(c \mapsto r^{(c)} \) for the case \((m, n) = (0, 1)\) that satisfies (11).

Thus let \(c(z) = a/(1 - z/z_0) \) be given, where \(z_0 \) lies in the region \(C^0 = \mathbb{C} \setminus \{\infty\} \setminus I \). Let \(\theta \in (0, \pi/2) \) and \(\rho \in (1, \infty) \) be arbitrary fixed constants (say,
Our choice of \(r^{(c)} \) depends on which of four domains \(A^+, A^-, B, C \) the pole lies in:

\[
A^+ = \{ z \in C : |\arg(-1 \pm z)| < \theta \},
B = \{ z \in C - A^+ - A^- : |z| \leq \rho \},
C = C^0 - A^+ - A^- - B.
\]

The configuration is indicated in Figure 2.

We define \(r^{(c)} \) as follows:

For \(z_0 \in A^+ \):
\[
r^{(c)}(z) = \frac{1 - 1/|z_0|}{1 + z/|z_0|} \text{Re } c(\pm 1).
\]

For \(z_0 \in B \):
\[
r^{(c)} \equiv 0.
\]

For \(z_0 \in C \):
\[
r^{(c)} \equiv \text{Re } a.
\]

The proof can now be completed by showing that there exist constants \(M_A, M_B, M_C \) such that (11) holds for \(z_0 \) restricted to each domain \(A^+ \cup A^-, B, C \). The global constant \(M \) can then be taken as \(M = \max\{M_A, M_B, M_C\} \). The algebra involved is unfortunately quite tedious, so we will omit these verifications. However, details of a similar argument for the case of approximation on certain Jordan regions in \(C \) are given in [17].

4. \(\gamma_{0n}^\Delta = 0 \) for \(n \geq 4 \).

Let \(\Delta \) be the closed unit disk \(\{ z \in C : |z| \leq 1 \} \), and let \(f \) be continuous in \(\Delta \) and analytic in the interior and satisfy \(f(\overline{z}) = \overline{f(z)} \). Let \(\|f\|_\Delta \) denote \(\sup_{z \in \Delta} |f(z)| \), and define \(E'(f; \Delta), E'(f; \Delta) \), and \(\gamma_{mn}^\Delta \) as in (1) and (2). Until recently it was not even known whether \(\gamma_{mn}^\Delta < 1 \) is possible, but in a separate paper we show that this inequality holds at least for all pairs \((m, n) \) with \(m = 0, n \geq 1 \) or \(m \geq 0, n = 1 \) [6].

By a variation of the argument of §2, we will now prove

Theorem 3. \(\gamma_{0n}^\Delta = 0 \) for \(n \geq 4 \).
L. N. TREFETHEN AND M. H. GUTKNECHT

Proof. Let \(\xi = e^{i\theta} \) for some fixed \(\theta \in (0, \pi) \), and for any \(\epsilon > 0 \), define

\[
\phi(z) = \frac{\epsilon(1 - \xi)^2}{[z + (1 + \epsilon)][(1 + \epsilon) - z][z - (1 + \epsilon/3)\xi]^2}
\]

and

\[
f(z) = \frac{1}{2}(\phi(z) + \bar{\phi}(z)).
\]

In analogy to the proof of Theorem 1, \(\gamma_{0n} = 0 \) for \(n \geq 4 \) will follow from the properties

(a) \(\|f - \phi\|_{\Delta} = O(\epsilon^{1/3}) \);

(b) there exists a constant \(C > 0 \) such that for all sufficiently small \(\epsilon \), \(f(-1) \leq -C \), \(f(1) \geq C \).

Both (a) and (b) can be readily derived by observing that the term

\[
(1 - \xi)^2/[z - (1 + \epsilon/3)\xi]^2
\]

behaves like 1 + \(O(\epsilon^{1/3}) \) near \(z = 1 \) and like \(-|(1 - \xi)/(1 + \xi)|^2 + O(\epsilon^{1/3}) \) near \(z = -1 \). We omit the details. \(\square \)

This argument can be extended to show \(\gamma_{0n}^\Omega = 0 \) for \(n \geq 4 \) for approximation on any Jordan region \(\Omega \) with \(\Omega = \overline{\Omega} \), provided \(\partial \Omega \) is differentiable at its two points of intersection with \(\mathbb{R} \), say \(z_1 \) and \(z_2 \), hence forms a right angle to \(\mathbb{R} \) at these points. Again one introduces a complex double pole, slightly above the point \(z_1 \) (analogous to taking \(\xi = e^{i\theta} \) with \(\theta \) small above), and this generates an approximate sign change between \(\phi(z_1) \) and \(\phi(z_2) \).

One can also prove \(\gamma_{01}^\Omega > 0 \) for the same class of regions \(\Omega \). See [17].

Note added in proof. After studying the present paper, E. Saff has pointed out to us that the existence of arbitrarily small numbers \(\gamma_{mn} \) is implied by a result of Walsh in 1934 [19, Theorem IV], although this consequence was never recognized. Walsh showed that for any \(m \geq 0 \), the family \(\bigcup_{n=0}^{\infty} R_{mn} \) is dense in \(C[I] \) (or indeed in the space of continuous functions on any Jordan arc in \(C \)), so that \(\lim_{n \to \infty} E_{mn}(f) = 0 \) for \(f \in C[I] \). On the other hand, as we have seen, if \(f \) has \(m + 1 \) zeros, then it cannot be approximated arbitrarily closely in \(\bigcup_{n=0}^{\infty} R_{mn}^* \), i.e. \(\lim_{n \to \infty} E_{mn}^*(f) > 0 \). It follows that for any \(m \geq 0 \), \(\lim_{n \to \infty} \gamma_{mn} = 0 \).

References

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

Seminar für Angewandte Mathematik, ETH, Zürich, Switzerland