Real vs. complex rational Chebyshev approximation on an interval

Authors:
Lloyd N. Trefethen and Martin H. Gutknecht

Journal:
Trans. Amer. Math. Soc. **280** (1983), 555-561

MSC:
Primary 41A25; Secondary 41A50

DOI:
https://doi.org/10.1090/S0002-9947-1983-0716837-X

MathSciNet review:
716837

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If is real-valued, let and be the errors in best approximation to in the supremum norm by rational functions of type with real and complex coefficients, respectively. It has recently been observed that can occur for any , but for no is it known whether is zero or strictly positive. Here we show that both are possible: , but for . Related results are obtained for approximation on regions in the plane.

**[1]**Colin Bennett, Karl Rudnick, and Jeffrey D. Vaaler,*On a problem of Saff and Varga concerning best rational approximation*, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 235–245. MR**0473636****[2]**Colin Bennett, Karl Rudnick, and Jeffrey D. Vaaler,*Best uniform approximation by linear fractional transformations*, J. Approx. Theory**25**(1979), no. 3, 204–224. MR**531411**, https://doi.org/10.1016/0021-9045(79)90012-1**[3]**S. W. Ellacott,*A note on a problem of Saff and Varga concerning the degree of complex rational approximation to real valued functions*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 2, 218–220. MR**640950**, https://doi.org/10.1090/S0273-0979-1982-14987-4**[4]**M. H. Gutknecht,*On complex rational approximation*, Computational Aspects of Complex Analysis (H. Werner, et al., eds.), Reidel, Dordrecht, 1983.**[5]**-,*Algebraically solvable Chebyshev approximation problems*, Approximation Theory IV (L. Schumaker, ed.), Academic Press, New York (in press).**[6]**M. H. Gutknecht and L. N. Trefethen,*Nonuniqueness of rational Chebyshev approximations on the unit disk*, J. Approximation Theory (in press).**[7]**K. N. Lungu,*The best approximations by rational functions*, Mat. Zametki**10**(1971), 11–15 (Russian). MR**0290004****[8]**Günter Meinardus,*Approximation of functions: Theory and numerical methods*, Expanded translation of the German edition. Translated by Larry L. Schumaker. Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. MR**0217482****[9]**Arden Ruttan,*On the cardinality of a set of best complex rational approximations to a real function*, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 303–319. MR**0473647****[10]**E. B. Saff and R. S. Varga,*Nonuniqueness of best approximating complex rational functions*, Bull. Amer. Math. Soc.**83**(1977), no. 3, 375–377. MR**0433108**, https://doi.org/10.1090/S0002-9904-1977-14276-6**[11]**E. B. Saff and R. S. Varga,*Nonuniqueness of best complex rational approximations to real functions on real intervals*, J. Approx. Theory**23**(1978), no. 1, 78–85. MR**499031**, https://doi.org/10.1016/0021-9045(78)90081-3**[12]**A. Talbot,*On a class of Tchebysheffian approximation problems solvable algebraically*, Proc. Cambridge Philos. Soc.**58**(1962), 244–267. MR**0165291****[13]**Lloyd N. Trefethen,*Rational Chebyshev approximation on the unit disk*, Numer. Math.**37**(1981), no. 2, 297–320. MR**623046**, https://doi.org/10.1007/BF01398258**[14]**Richard S. Varga,*Topics in polynomial and rational interpolation and approximation*, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 81, Presses de l’Université de Montréal, Montreal, Que., 1982. MR**654329****[15]**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR**0218587**

J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR**0218588****[16]**A. A. Gončar,*The rate of approximation by rational fractions and the properties of functions*, Proc. Internat. Congress of Mathematicians (Moscow, 1966), Izdat. "Mir", Moscow, 1968. (Russian)**[17]**M. H. Gutknecht and L. N. Trefethen,*Real vs. complex rational Chebyshev approximation on complex domains*, Numerische Methoden der Approximationstheorie, vol. 7 (L. Collatz and H. Werner, eds.), Birkhäuser (in press).**[18]**A. Ruttan,*The length of the alternation set as a factor in determining when a best real rational approximation is also a best complex rational approximation*, J. Approx. Theory**31**(1981), no. 3, 230–243. MR**624011**, https://doi.org/10.1016/0021-9045(81)90093-9**[19]**J. L. Walsh,*On approximation to an analytic function by rational functions of best approximation*, Math. Z.**38**(1934), no. 1, 163–176. MR**1545445**, https://doi.org/10.1007/BF01170632

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A25,
41A50

Retrieve articles in all journals with MSC: 41A25, 41A50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0716837-X

Keywords:
Chebyshev approximation,
rational approximation

Article copyright:
© Copyright 1983
American Mathematical Society