Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ M$-structure in the Banach algebra of operators on $ C\sb{0}(\Omega )$


Authors: P. H. Flinn and R. R. Smith
Journal: Trans. Amer. Math. Soc. 281 (1984), 233-242
MSC: Primary 46H99; Secondary 46J99, 47D30
DOI: https://doi.org/10.1090/S0002-9947-1984-0719668-0
MathSciNet review: 719668
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The $ M$-ideals in $ B({C_0}(\Omega ))$, the space of continuous linear operators on $ {C_0}(\Omega )$, are determined where $ \Omega $ is a locally compact Hausdorff countably paracompact space. A one-to-one correspondence between $ M$-ideals in $ B({C_0}(\Omega ))$, open subsets of the Stone-Čech compactification of $ \Omega $, and lower semicontinuous Hermitian projections in $ B{({C_0}(\Omega ))^{\ast\ast}}$ is established.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, Berlin, 1971. MR 0445271 (56:3615)
  • [2] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. I, Ann. of Math. (2) 96 (1972), 98-128. MR 0352946 (50:5432)
  • [3] -, Structure in real Banach spaces. II, Ann. of Math. (2) 96 (1972), 129-173.
  • [4] L. Asimow, Decomposable compact convex sets and peak sets for function spaces, Proc. Amer. Math. Soc. 25 (1970), 75-79. MR 0259607 (41:4244)
  • [5] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Ser., no. 2, Cambridge Univ. Press, Cambridge, 1971. MR 0288583 (44:5779)
  • [6] -, Numerical ranges. II, London Math. Soc. Lecture Notes Ser., no. 10, Cambridge Univ. Press, Cambridge, 1973. MR 0442682 (56:1063)
  • [7] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 0143056 (26:622)
  • [8] F. Cunningham, E. G. Effros and N. Roy, $ M$-structure in dual Banach spaces, Israel J. Math. 14 (1973), 304-309. MR 0322528 (48:890)
  • [9] C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219-244. MR 0043446 (13:264c)
  • [10] P. H. Flinn, A characterization of $ M$-ideals in $ B({l_p})$ for $ 1 < p < \infty $, Pacific J. Math. 98 (1982), 73-80. MR 644939 (84i:47064)
  • [11] J. Hennefeld, A decomposition of $ B{(X)^{\ast}}$ and unique Hahn-Banach extensions, Pacific J. Math. 46 (1973), 197-199. MR 0370265 (51:6492)
  • [12] -, $ M$-ideals, $ HB$-subspaces and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934. MR 551156 (80j:46030)
  • [13] J. L. Kelly, General topology, Van Nostrand, New York, 1955. MR 0070144 (16:1136c)
  • [14] A. Lima, $ M$-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), 207-217. MR 544588 (81c:47047)
  • [15] -, On $ M$-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), 27-36. MR 642613 (83b:46021)
  • [16] A. M. Sinclair, The states of a Banach algebra generate the dual, Proc. Edinburgh Math. Soc. 17 (1971), 341-344. MR 0312266 (47:828)
  • [17] -, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. MR 0275164 (43:921)
  • [18] R. R. Smith, On Banach algebra elements of thin numerical range, Math. Proc. Cambridge Philos. Soc. 86 (1979), 71-83. MR 530811 (80f:46051)
  • [19] -, The numerical range in the second dual of a Banach algebra, Math. Proc. Cambridge Philos. Soc. 89 (1981), 301-307. MR 600245 (82e:46065)
  • [20] R. R. Smith and J. D. Ward, $ M$-ideal structure in Banach algebras, J. Funct. Anal. 27 (1978), 337-349. MR 0467316 (57:7175)
  • [21] -, Applications of convexity and $ M$-ideal theory to quotient Banach algebras, Quart. J. Math. Oxford Ser. (2) 30 (1979), 365-384. MR 545071 (80h:46071)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46H99, 46J99, 47D30

Retrieve articles in all journals with MSC: 46H99, 46J99, 47D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0719668-0
Keywords: $ M$-ideal, $ M$-summand, Banach algebra, Hermitian projections, lower semicontinuous projections, countably paracompact space
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society