Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A two weight weak type inequality for fractional integrals


Author: Eric Sawyer
Journal: Trans. Amer. Math. Soc. 281 (1984), 339-345
MSC: Primary 26A33; Secondary 26D10, 26D15, 42B25
DOI: https://doi.org/10.1090/S0002-9947-1984-0719674-6
MathSciNet review: 719674
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ 1 < p \leqslant q < \infty ,0 < \alpha < n$ and $ w(x),\upsilon (x)$ nonnegative weight functions on $ {R^n}$ we show that the weak type inequality

$\displaystyle \int_{\{ {T_\alpha }f > \lambda \} }\,w(x)\;dx \leqslant A{\lambda ^{ - q}}{\left( \int \vert f(x){\vert^p}\;\upsilon (x)\;dx \right)^{q/p}}$

holds for all $ f \geqslant 0$ if and only if

$\displaystyle \int_Q\,[{T_\alpha }({\chi_Q}w)\,(x)]^{p'}\upsilon (x)^{1 - p'}\,dx \leqslant B\left( \int_Qw \right)^{p^{\prime}/q^{\prime}} < \infty $

for all cubes $ Q$ in $ {R^n}$. Here $ {T_\alpha }$ denotes the fractional integral of order $ \alpha ,{T_\alpha }f(x) = \int \vert x - y{\vert^{\alpha - n}}f(y)\,dy$. More generally we can replace $ {T_\alpha }$ by any suitable convolution operator with radial kernel decreasing in $ \vert x\vert$.

References [Enhancements On Off] (What's this?)

  • [1] D. R. Adams, On the existence of capacitary strong type estimates in $ {R^n}$, Ark. Mat. 14 (1976), 125-140. MR 0417774 (54:5822)
  • [2] R. R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838-2839. MR 0303226 (46:2364)
  • [3] B. Dahlberg, Regularity properties of Riesz potentials, Indiana Univ. Math. J. 28 (1979), 257-268. MR 523103 (80g:31004)
  • [4] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. MR 0257819 (41:2468)
  • [5] K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102. MR 567435 (81j:31007)
  • [6] R. Kerman and E. Sawyer, Weighted norm inequalities of trace-type for potential operators, preprint.
  • [7] V. G. Maz'ya, On some integral inequalities for functions of several variables, Problems in Math. Analysis, No. 3, Leningrad Univ. (Russian)
  • [8] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 251-275. MR 0340523 (49:5275)
  • [9] E. Sawyer, Multipliers of Besov and power weighted $ {L^2}$ spaces, Indiana Univ. Math. J. (to appear). MR 740955 (85f:42020)
  • [10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A33, 26D10, 26D15, 42B25

Retrieve articles in all journals with MSC: 26A33, 26D10, 26D15, 42B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0719674-6
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society