Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An improved stability result for resonances
HTML articles powered by AMS MathViewer

by Mark S. Ashbaugh and Carl Sundberg PDF
Trans. Amer. Math. Soc. 281 (1984), 347-360 Request permission

Abstract:

We prove stability of shape resonances for the sequence of Schrödinger equations $( - {d^2}/d{x^2} + U(x) + {W_n}(x))\psi (x) = E\psi (x),0 \leqslant x < \infty$, in the limit $n \to \infty$ where the barrier potentials ${W_n}(x)$ are integrable, nonnegative, supported in the interval $[1,a]\;(1 < a < \infty )$, and approach infinity pointwise a.e. for $x \in [1,a]$ as $n \to \infty$. In the course of our investigation we prove that for suitable complex initial conditions the solution to the Riccati equation $S’(x) = 1 - ({W_n}(x) - E){[S(x)]^2}$ goes to $0$ as $n \to \infty$ uniformly on compact subsets of $[1,a]$. Our approach is via ordinary differential equations using outgoing wave boundary conditions to define resonances. Our stability result extends a similar result of Ashbaugh and Harrell, who use an argument based on asymptotics and the implicit function theorem to study the above problem with $\lambda V(x)$ replacing ${W_n}(x)$. Our approach is to use the Riccati equation analysis mentioned above and an application of Hurwitz’s Theorem from complex variable theory.
References
    G. Gamow, Constitution of atomic nuclei and radioactivity, Oxford Univ. Press, Oxford, 1931. A. J. F. Siegert, On the derivation of the dispersion formula for nuclear reactions, Phys. Rev. 56 (1939), 750-752.
  • Mark S. Ashbaugh and Evans M. Harrell II, Perturbation theory for shape resonances and large barrier potentials, Comm. Math. Phys. 83 (1982), no. 2, 151–170. MR 649157
  • E. Schrodinger, Quantisierung als Eigenwertproblem. IV: Störungstheorie mit Anwendung auf den Starkeffekt der Balmerlinien, Ann. Physik (7) 80 (1926), 437-490.
  • Franz Rellich, Störungstheorie der Spektralzerlegung, Math. Ann. 113 (1937), no. 1, 600–619 (German). MR 1513109, DOI 10.1007/BF01571652
  • Tosio Kato, On the convergence of the perturbation method. I, Progr. Theoret. Phys. 4 (1949), 514–523. MR 34510, DOI 10.1143/ptp/4.4.514
  • B. Sz.-Nagy, Perturbations des transformations autoadjointes dans l’espace de Hilbert, Comment. Math. Helv. 19 (1946/47), 347-366.
  • Barry Simon, Resonances in $n$-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. of Math. (2) 97 (1973), 247–274. MR 353896, DOI 10.2307/1970847
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
  • B. Simon, Resonances and complex scaling: a rigorous overview, Internat. J. Quantum. Chem. 14 (1978), 529-542.
  • H. Baumgärtel and M. Demuth, Decoupling by a projection, Rep. Math. Phys. 15 (1979), no. 2, 173–186. MR 554151, DOI 10.1016/0034-4877(79)90017-X
  • J. M. Combes, P. Duclos and R. Seiler, Krein’s formula and one-dimensional multiple wells (to appear).
  • GĂ©rard G. Emch and Kalyan B. Sinha, Weak quantization in a nonperturbative model, J. Math. Phys. 20 (1979), no. 7, 1336–1340. MR 538706, DOI 10.1063/1.524236
  • B. Simon, Exterior complex scaling and molecular resonances in the Born-Oppenheimer approximation (to appear).
  • E. Vock and W. Hunziker, Stability of Schrödinger eigenvalue problems, Comm. Math. Phys. 83 (1982), no. 2, 281–302. MR 649163
  • A. Böhm, Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics (to appear).
  • Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
  • M. S. Ashbaugh, Asymptotic perturbation theory for the eigenvalues of Schrödinger operators in a strong coupling limit, Thesis, Princeton Univ., Princeton, N. J., 1980.
  • John B. Conway, Functions of one complex variable, Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Heidelberg, 1973. MR 0447532
  • J. Duncan, The elements of complex analysis, John Wiley & Sons, London-New York-Sydney, 1968. MR 0233960
  • Evans M. Harrell, On the rate of asymptotic eigenvalue degeneracy, Comm. Math. Phys. 60 (1978), no. 1, 73–95. MR 486764
  • Garrett Birkhoff and Gian-Carlo Rota, Ordinary differential equations, 3rd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1978. MR 507190
  • H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
  • Sergio Albeverio and Raphael Høegh-Krohn, Perturbation of resonances in quantum mechanics, J. Math. Anal. Appl. 101 (1984), no. 2, 491–513. MR 748584, DOI 10.1016/0022-247X(84)90115-X
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 81C12, 34B25
  • Retrieve articles in all journals with MSC: 81C12, 34B25
Additional Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 281 (1984), 347-360
  • MSC: Primary 81C12; Secondary 34B25
  • DOI: https://doi.org/10.1090/S0002-9947-1984-0719675-8
  • MathSciNet review: 719675