Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalized Hua-operators and parabolic subgroups. The cases of $ {\rm SL}(n,\,{\bf C})$ and $ {\rm SL}(n,\,{\bf R})$


Author: Kenneth D. Johnson
Journal: Trans. Amer. Math. Soc. 281 (1984), 417-429
MSC: Primary 22E46; Secondary 22E30, 43A85
DOI: https://doi.org/10.1090/S0002-9947-1984-0719678-3
MathSciNet review: 719678
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ G = {\text{SL}}(n,{\mathbf{C}})$ or $ {\text{SL}}(n,{\mathbf{R}})$ and $ K$ is a maximal compact subgroup of $ G$. If $ P$ is any parabolic subgroup of $ G$, we determine a system of differential equations on $ G/K$ with the property that any function on $ G/K$ satisfies these differential equations if and only if it is the Poisson integral of a hyperfunction on $ G/P$.


References [Enhancements On Off] (What's this?)

  • [1] N. Berline and M. Vergne, Equations du Hua et intégrales de Poisson, C. R. Acad. Sci. Paris Sér. A 290 (1980), 123-125. MR 563956 (81c:32059)
  • [2] -, Equations du Hua et noyau de Poisson, Lecture Notes in Math., vol. 880, Springer-Verlag, Berlin and New York, 1981, pp. 1-51.
  • [3] Harish-Chandra, Discrete series for semisimple Lie groups. II, Acta. Math. 116 (1966), 1-111. MR 0219666 (36:2745)
  • [4] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [5] L. K. Hua, Harmonic analysis of functions of several complex variables in classical domains. Transl. Math. Mono., vol. 6, Amer. Math. Soc., Providence, R. I., 1963. MR 0171936 (30:2162)
  • [6] K. Johnson, Differential equations and the Bergman-Silov boundary on the Siegel upper half plane, Ark. Mat. 16 (1978), 95-108. MR 499140 (80d:32032)
  • [7] K. Johnson and A. Korányi, The Hua operators on bounded symmetric domains of tube type, Ann. of Math. (2) 111 (1980), 589-608. MR 577139 (81j:32032)
  • [8] M. Kashiwara et al., Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), 1-39. MR 485861 (81f:43013)
  • [9] A. Korányi, Poisson integrals and boundary components of symmetric spaces, Invent. Math. 34 (1976), 19-35. MR 0425197 (54:13154)
  • [10] A. Korányi and P. Malliavin, Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel half plane of rank two, Acta Math. 134 (1975), 185-209. MR 0410278 (53:14028)
  • [11] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809. MR 0311837 (47:399)
  • [12] M. Lasalle, C. R. Acad. Sci. Paris 294 (1982).
  • [13] -, C. R. Acad. Sci. Paris 294 (1982).
  • [14] H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., vol. 216, Springer-Verlag, Berlin and New York, 1971. MR 0344198 (49:8938)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E46, 22E30, 43A85

Retrieve articles in all journals with MSC: 22E46, 22E30, 43A85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0719678-3
Keywords: Hua-operators, parabolic subgroups, boundary
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society