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A MINIMAL MODEL FOR ^CH:

ITERATION OF JENSENS REALS

BY

URI ABRAHAM1

Abstract. A model of ZFC + 2s" = S2 is constructed which is minimal with

respect to being a model of -,CH. Any strictly included submodel of ZF (which

contains all the ordinals) satisfies CH. In this model the degrees of constructibility

have order type o>2. A novel method of using the diamond is applied here to

construct a countable-support iteration of Jensen's reals: In defining the ath stage of

the iteration the diamond "guesses" possible ß > a stages of the iteration.

Introduction. Let V be a transitive universe (i.e., model of ZFC). We say that V is

a minimal model for -,CH (negation of continuum hypothesis) if -,CH holds in V

and whenever V* Q V is a transitive submodel of ZFC + -,CH which contains all

the ordinals of V, then necessarily V* = V.

A minimal model for -,CH has previously been constructed by Marcia J. Groszek;

in fact [G] any countable transitive universe M of CH is generically extended to a

minimal (above M) model for -,CH (i.e., there is no model for -,CH which is strictly

included in between M and the generic extension).

We give here another construction of a minimal model for -,CH. The main

structural difference between our model and Groszek's is that here the degrees of

constructibility are linearly ordered in order-type w2 while in [G] it is the complexity

of the structure of the constructibility degrees which is the key to the minimality of

the extension.

So, our paper is devoted to the proof of the following theorem. We use L (the

universe of constructible sets) as the ground model.

Theorem. There is a constructible poseí P such that ifP is an L-generic filter over P

then L[P] is a minimal model for -,CH in which the degrees of constructibility have

order-type u2.

The proof of this theorem might appear somewhat technical, yet the general ideas

are very natural. Therefore, I think the reader will appreciate a description of the

proof.

G. Sacks [Sa] considered the poset of all perfect trees; he showed that a generic

extension which is obtained via the poset of perfect trees is a minimal extension of

the ground model. J. Baumgartner and R. Laver iterated this Sacks' forcing with a
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countable support iteration [B, L]. A. Miller, in a by-product of his work [M], proved

that in the model of [B, L] (obtained by iterating w2 many times the Sacks forcing)

the degrees of constructibility have order-type w2. (The degrees of constructibility

are the equivalence classes obtained by regarding the partial order "x is construcible

fromy"—x E L[y]—defined on the subsets of «.)

This model is the first which comes to mind when the problem of finding a

minimal model for -,CH is considered. If the degrees of constructibility have

order-type «2, and since N2 = N2 holds in this model, any submodel of -,CH must

contain S2 many reals and hence all the reals. Yet, this submodel does not

necessarily contain all subsets of w,. P. Dordal showed that indeed the model

obtained by iterating the Sacks perfect-trees posets is not a minimal model for -nCH.

(See [G] for a full discussion and proof.) The reason, in short, is that although all the

S2 reals must appear in the intermediate model of -,CH, the sequence of generic

reals need not. A possible approach is to use Jensen's method [Jl] for obtaining a

definable real of minimal degree of constructibility.2 In the next section we describe

Jensen's real, and in the subsequent section the iteration of these posets—which is

our main point.

Jensen's poset is a subset of the collection of all perfect trees. The motivation for

constructing such a poset, Jensen says, comes from the construction of a Souslin tree

in L. [Jl] uses the constructible diamond-sequence to thin out a subcollection of the

Sacks poset which satisfies the c.a.c. (any antichain is countable). However, the most

important property of this subcollection is that it is a rigid poset, and the conse-

quence of this is that the generic object over the Jensen poset is unique. So, if we

iterate Jensen's posets and if the degrees of constructibility have order-type w2 in the

resulting model, then any intermediate model of -,CH must not only contain all the

reals but actually also the unique sequence of generic reals and so is the full model.

Thus the only problem is to get the right-order-type of constructibility degrees.

When analyzing Miller's proof of the fact that w2 is the order-type of the

constructibility degrees in the [B, L] model of the Sacks iteration, one can see that a

crucial point is the closure of the perfect trees under fusions. In fact [B, L]

formalized the notion of fusion also for the iteration of Sacks forcing and it is that

notion which is used. But the deflated poset of Jensen is not closed under the

arbitrary fusion sequence and so Miller's arguments cannot be applied directly. The

remedy, of course, is to close the Jensen posets under enough fusion sequences so as

to apply the Miller argument, yet to do so sparsely so that a rigid poset will result.

But there is a problem here: When constructing the a poset (a < u2) in the iteration

of Jensen's posets, we have to take into account fusion sequences of iterated

conditions which involve posets which are not even yet constructed (they will be

constructed at stages ß, a < ß < u2). How could we do that? A problem of similar

nature appeared before Jensen in [D, J] where he iterated Souslin trees u>2 times and

used the diamond and square for that. Here, however, we need a different approach.

21 am indebted to J. Baumgartner and P. Dordal for a discussion of this point.
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We use Shelah's idea in his proof [S] of the omitting-type for L[Q\ The diamond is

used to give the future posets.

In §1 we bring the basic definitions and lemmas needed subsequently; much of

the material there is essentially due to Baumgartner-Laver [B, L] and to Miller [M];

the poset Q(P) (when P is the Sacks poset) was considered first by Shelah.

About notations: We use V, W to denote universes of set-theory. V is usually the

ground model, and if P is a poset then Vp is the Boolean-valued model of RO(P). Pv

will denote an iteration of length t). P0 is the empty set and Vp° is to be read as V. P

denotes a generic filter over P, and V[P] is the generic extension. For a name

x E Vp, xp denotes the interpretation of x in K[P]. Sometimes we mix Vp and

V[P], and if a E V[P] we may regard it as a name and use it in the forcing language.

U, S, F will denote trees; P,Q,R, posets. We write 0 lhp<p to mean (Vp E P) p H-P<p.

Let us close the introduction with an open question: Is there in our model a JJ2 set

of reals which picks just one real from each equivalence class of constructibility? Is it

consistent to have such a set in a model of ZFC where the degrees of constructibility

have order-type «2? (Recall that a Jensen real is a U]2 singleton.)

1. Basic definitions and properties.

Perfect trees. s2 is the collection of all functions from a natural number into

(0,1}. s and t denote members of "2. T <Z"2 is a perfect tree if

(1)5 C t E T^s E T, and

(2) T is nonempty and every s E T splits in T, i.e., there are tx and t2 in T,

s C i, n t2 but i, Çt t2 and r2 Çt tx.

The collection of perfect trees is partially ordered by inclusion. We read Tx C T2

as Tx is above T2.

When are two trees compatible! Given perfect trees T and S, define T A S—the

meet of T and S—in a Cantor-Bendixon fashion as follows. Begin with U0 = T D S

and define trees Ua,a<ux, inductively: Ua+X is the tree of all s E Ua which splits in

Ua.  For limit 8,   Us = H:<SU,.  Finally,  T A S = Ua for the first a such that

u*=ua+].
T A S is either a perfect tree or the empty set. T A S ¥= 0 just in case T and S are

compatible (i.e., T n S contains a perfect tree). A consequence of this is that the

notion of compatibility is absolute: if T A S = 0 in some transitive structure in

which the Cantor-Bendixon process can be carried out, then T A S = 0 in any

extension of that structure and T is incompatible with S.

Also obvious is that J A 5 is the least upper bound of T and S (in the reversed

inclusion partial order): U C T A 5 for every perfect tree U such that U C T n S. A

consequence is that

(1.1) (FAS) A U= TA(SA U).

For a perfect tree F and s £"2 let

Ts= {t E T\s C tort Ç s).

Ts is a (nonempty) perfect tree just in case s E T.
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The following can be easily proved

(1.1a)     (TAS)S= TSASS,        (F, U T2) A S = (F, A S) U (F2 A S).

Perfect posets. A collection P of perfect trees is called a perfect poset if

(1) «2 G P and («2)ä G P for 5 G»2.

(2) F A S G P whenever F and 5 are compatible and in P. (Hence F G P and

sET imply Ts G P.)

(3) T U S G P whenever F and S are in P.

Generic reals. If P is a generic filter over a perfect poset P, then r = U D P G"2

is called the canonical generic real of P.

P can be easily recovered from r and P as follows. Say t is a branch of T if

t f « G F for all « G a?. Look at the set of all T E P such that r is a branch of F, this

is P.

The posets Q(P). For any perfect poset P we associate a new poset, Q(P),

consisting of all pairs (F, n) with F G P and n G u. The partial order is defined by:

(T, «') < (F, «) (and we say (F, w) extends (T, n'y) if F Q T, n' < n, and

VsG"'2(sG F «5 G r).

If Q is a generic filter over Q(P), then (by a density argument)

t= U {Tn"2\(T,n) GQ)

is a perfect tree, and

(F, /i) < (F, w)    whenever (F, n) E Q.

(It is clear that t is not a member of P and (F, «) is not in Q(P), so the above is an

acceptable abuse of notation.)

This perfect tree t is called the generic tree of Q or the tree derived from Q.

1.2. Lemma. Let R be a perfect poset; Q a V-generic filter over Q(R); t the generic

tree o/Q. Put R* = the closure under finite unions of

RU {FASISGR&FAS^ 0 J.

Then, R* is a perfect poset, and for any X E V, X Ç R a maximal antichain, X is a

maximal antichain of R* too.

Proof. Since R is a perfect poset and since R* is closed under finite unions, all

that is necessary to conclude that R* is a perfect poset is to show the closure of R*

under (nonempty) meets. So let 5 = 5, U • • • U S„, T = F, U • • • U T„ be in R*

(where S„ F,-are in R U {F A S | S G R & t A S # 0 }). To show that S A F G R*,

it is enough to remark that

5AF=     (J    5,- A 77    and    S¡ A 7} G R U [t A S\S E R).

(Use (1.1) and (1.1a) and conclude also that (F A S) A (F A S') = f A (S A S').)

Now if A' Ç R, in K, is a maximal antichain, and F G R* is arbitrary, we have to

prove that T is compatible with some member of X. We can assume w.l.o.g.,

FGRU {FASISGR&FAS^ 0}, and, since X is maximal is R, it is enough

to deal with F = t A S for some 5 G R.
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Let (U, n) G Q(R) be an arbitrary condition which forces T — TAS. We will

find an extension of (U, n) which forces F A 5 to be compatible with some member

of X. Since (U, n) \\- T C U, it must be that U and S are compatible (in the ground

model V, by absoluteness) and U A S E R. Pick s E"2 n (U A S), let U' =

(U A S)s, then U' E R and we can find U" G R which is above U' and above a

member of X. Now put

U* = u" U U {U,\t E"2 n Í7and ****},

then U* E R, (Í7, n) < (t/*, n), and Us* = U". Since ([/*, n) lr s E t and ts Ç U*,

and since U* C S is above a member of X, we get that (U*, n)\\- fs C f A S is

above a member of X

In fact, a slightly stronger claim can be proved: Say that X C R is a maximal

antichain above T E R iff any S C T in R is compatible with some member of X.

Then, if X E F is a maximal antichain above F in R, X remains a maximal antichain

above F in R*. (Look at X U {S E R | S is incompatible with T), apply the lemma,

and use the absoluteness of incompatibility.)

1.3. Iteration of perfect posets. We are interested in iterating w2 times perfect

posets. Pv will stand for a countable-support iteration of length r/ < w2 of perfect

posets. The definition of P is by induction on tj. The members of P^ are countable

functions / with dom(/) a countable subset of tj such that f\ u G P^ for all u < r/

and ft uH-p""/(u) G R(u)",3 where R(u) is a name in Vp" of a perfect poset. (But

R(0) is a perfect poset and P, consists of all functions from 1 into R(0).) Sometimes

we write/(u) even when u £ dom(/) and then we mean/(u) to be the name of the

full tree—« 2.

The partial order is defined as usual. So, /<g iff dom(/) Q dom(g) and

(Va G dom(/))gr a lhP"g(a) C/(a).

If P,j is a generic filter over P^ then P = P^ n P^ (for ¡i < tj) is a generic filter over

PM; and {/(u)|/G ï^}, as interpreted in FfP^], form a HPJ generic filter over

R(u). Thus P,, gives a sequence (/*f |f G tj) of generic reals.

1.4. Lemma. P^ can be recovered from {rt |f G tj) and Pr

Proof. We recover P^, ¡i ^ tj, inductively. P, is the set of all functions in P, such

that r0 is a branch of /(0). Similarly, I^+1 consists of all/ G P(1+1 such that/r u G P^

and /(u) is interpreted in KfPJ as a tree in which r^ is a branch. In case u is a limit

ordinal

PM= {/GPJ/rTGPTforallTGu}

can be easily derived.    D

1.5. Definition and properties of/|o\ Given/ G P and a: D ^e2, where D is

a finite subset of dom(/), define f\a as follows: f\a is a function with the same

domain as /and

(1) (/| a)(u)=/(u) for uí 7), but

3By a standard trick, we can assume 0 <r"f(n) e R(ji)".
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(2) 0 lrP"(/|o)(u) =/(u)0((1), for u G D. Recall,/(u)0(/i) is the subtree of/(u) of

those functions compatible with o(¡i). In case/|a E P (i.e., for every ¡x E D,(f\a)t
p __ '

u lh "a(u) G f(fi)) we say that a is consistent withf.

(1.5a) Put ¡i = min D, then a is consistent with / iff ft ulh a(ß) G/(¡u), and

at (D — {u}) is consistent with f\ (a t {u}).

It is easy to prove that if a is consistent with /then

(i)f<f\o,
(ii) a I tj is also consistent with/,

(iii) a is consistent with/r f whenever U dom(a) < f.

In what follows, F denotes a finite function and £>f its domain, F: 7J>F -» to. We

say that a « bounded by F if a: DF -> ö2 satisfies a(¡x) E F(ll)2 for all u G 7)F.

If/G P^ and DF C dom(/), define (/, F) to be determined if, for any a bounded

by F, either a is consistent with / or else there is u G DF such that a t u is consistent

with/and (ft u) | (a 1 u) lh a(u) G /(u). (The definitions in 1.5 are from [B, L, §2].)

If a is bounded by F and consistent with/we say that a is consistent with (/, F).

The next lemma gathers some useful facts. It is similar to Lemma 2.2 in [B, L] and its

proof is left to the reader.

1.6. Lemma, (a) If(f,F) is determined then so is(f, Ft u).

(b) If /< g in P , (/, F) is determined and a is consistent with (g, F), then a is

consistent with f too andf\ a < g | a.

(c) 7//*£ g but /(f) = g(f ) for f G DFand if (f, F) is determined then so is (g, F).

(d) Put u = min(DF). (/, F) is determined iff ft u /c/jovví what is f(¡x) C\F(>l)2 and

for each s GF(,l)2 smc/i i/uz/ /i /u. H- 5 G/(ju), (/', F') is determined where f—

f\{(H,s)}andF = Ft(DF- ¡i+ I).

(e) G/uen a determined (/, F) f/iere exwtt a consistent with (/, F). /l«á í/ie sei

{/I a I a is consistent with (/, F)} is a maximal antichain above f.

1.7. Definition of union in Pr Let /,,... ,f„ G P,, be given. Suppose for some

ft< tj /1 /u = jff ju for i, y < «. Moreover, for distinct s,,..., j„ G*2,

/iríii-/f(í»)n*2={5(}.

We define/= U1</<Bj] to be the condition in P^, with dom(/) = Uls/s:„dom(/),

determined by the following conditions:

(l)/ru=/ru,

(2)0lh/(u)= U, ,„„/(«),

(3) if the generic real for R(u) extends j, then/(f) = /(f) (for f ^ u).

A direct check shows that/</,/| {(u, s,-)} =/, and if Vi, g </■ then g </. Also,

{/| 1 < / ^ «} is a maximal antichain above/: if/</' then/' is compatible with

some/.

For F: 7) -> u, F: D' -» to, we say F < F' if D Q D' and F(/x) < F'(/i) for all

u G D.

1.8. Definition of Q(P^). Q(P,) is the collection of all pairs (/, F) where/ G P^

and F: 7J>F -» u, DF C dom(/) is fimte.
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Q(P^) is partially ordered as follows: (/, F) < (/', F) iff /=£/' in P,,, F=£ F,

and for every u G DF

/Tulh/(u) n/r(")2=/'(u) n'7«1^.

We adopt the convention that F(ii) = 0 in case u g 7)F, and /(u) ="2 if u G

dom(/). Clearly, if F < F' then (/, F) < (/, F).

1.9. Lemma, (a) 7/(/, F) < (g, F) a«t/a k bounded by F, then a is consistent with g

if a is consistent with f. (If we assume, moreover, that (/, F) is determined, then,

together with Lemma 1.6(b) we get that a is consistent with g iff a is consistent withf.)

(b) For any(f, F) E Q(P„) there is g£P, such that(f, F) *£ (g, F) and(g, F) is

determined.

Proof of (a). The proof goes by induction on \DF\ (the cardinality of DF).

Suppose DF = {u}, (/, F) =£ (g, F) and a (bounded by F) is consistent with/, then

/rulha(u)G/(u). But (since (f,F)^(g,F)) also gr ulh/(u) nf<">2 = g(u)

nFOi)2, hence g r ulho(u) G g(u).

Suppose now \DF\> 1 and put ¡i — min DF. Assume the premise of the lemma

and that a is consistent with /, we want to prove that a is consistent with g. For that

we shall use equivalence 1.5(a). The previous paragraph shows that gt ulh a(u) G

g(li). It remains to prove that a t (DF — {u}) = a' is consistant with g | (a t {u}) = g'.

Since a is consistent with/, 1.5(a) implies that a' is consistent with/|(ar {u}) =/'.

Put F = F- {(u, F(u))}. If we prove (/', F') < (g', F'), then the induction hy-

pothesis implies that a' is consistent with g'.

First,/' < g' is an easy consequence of /< g and the fact that at {u} is consistent

with / and with g. Then, since g< g' (by 1.5(i)), and since (/, F) < (g, F), and

since /'(A) =/(£) and g'(/ï) = g(A) for u < /I, g' hf'(ß) n™2 = g'(ß) DF^2,

for fi G 7)F - {u}. It follows that (/', F') *£ (g', F').

Proof of (b). Again, by induction on | DF\. When \DF\= 1, say DF = {u}, simply

extend /f u and find g G P^, /<g, such that gt u describes /(u) n/?('1,2 and

g(ju) = f(n). When |7>F|> 1, put /i = min Í>F and F' = Fr (DF — {fi}). Extending

ft [í, we can assume that/C ju describes/(u) nF<'l)2. Let s,,... ,s„ G^*4^ be all those

that/f u knows to be in/(u) n/r('i)2. We shall define inductively/),... ,/„ G P^ such

thati<j-*fitp<fjtii.
To begin with,/0 = f. If/ is defined, put/' = ft ft U ((/| {|tt, s/+,})r tj — u), then

extend /', using the induction hypothesis, and find /+1 > f¡ such that (/', F') <

(fi+], F') and (/+,, F') is determined.

Now, when fn is defined (assuming to.l.o.g. that / r u — f¡■ r ju) we set g = U1</s;n/-.

/< g since (VI < / < n) /</ (see 1.7). (g, F) is determined since gr u lh g(u)

nF""2={i,.j„}, and g|{(u,s,)}=/ and (/, F) is determined. (/,F)<

(g, F) is also obvious.    D

1.10. Lemma. Let D QP^be dense. For any determined (/, F) G Q/P,,) there is

(g, F) 5= (/, F) satisfying this:

g\a E D whenever a is consistent with (g, F).
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Proof. Again by induction on \F\ ; or use Lemma 3.1 of [M].

The next lemma is similar to Lemma 5 of [M] but the proof is complicated by the

fact that an arbitrary perfect poset is not closed under fusions. (And so, when we are

in the middle of an iteration we do not know that what remains to be forced is again

a countable-support iteration.4)

Let us call sets of the form {« G"2|s Ç u) for some s£82 basic open sets (of

height ||s||).

1.11. Lemma. Suppose f E P^, t is a name, andfW t G"2 A t G VPt for all f < tj.

Assume (/, F) is determined. Put 2 = {a \ a is consistent with (/, F)}. Then there are

disjoint basic open sets Ca, for a G 2, and there is g E Pn with (f, F) ^ (g, F) such

that

g|alhTGC„,   fora E 2.

So g lh t G U (CJo G 2}. (We can clearly assume that all the Ca have the same

height.)

Proof. Observe first that if /< A G P,,, u < tj, then there are hx, h2 extending

h, hxt n = h2t n, giving incompatible information about rt m for some m E u (i.e.,

h ¡ft- ri m = s¡, i = 1,2, and sx ¥= s2). Otherwise, we would get h lh t G Vp». Con-

tinuing, for any given n, there are extensions h,,...,h„ of h giving incompatible

information on t t m (for some m ) such that hxt n = h2t n = • • • = hn \ /x.

The proof of the lemma proceeds by induction on |F\. For | F|= 1 put DF — {u}.

Let sx,...,sk be all those functions forced by ft u to be in /(u) nF(,l)2. Set

/' =/l{(u»Äi)}; use tne observation above to find ff,..., fkl extending/1 giving

incompatible information on rt m such that /,' t u = • • • =fkx t u. Repeating this

process k — 1 more times—for s2,...,sk—and extending a little bit more, we can

find/' (1 < i, j < k) with/' t ju = /.' t ii,f/ extends f\ {(¡u, s¡)}; and for some m for

each 1 </<&, f' (j — l,...,k) gives incompatible information on jt m. Now

choose j(i) < k for each i < k so that/('() (i = 1,... ,k) gives incompatible informa-

tion on tC w. Finally let g be the union of/(,,,... ,fjkkr (See 1.7 for definition and

properties of unions.)

Next, assume | F\> 1 and u = min DF. Let sx,. ..,sk be the members of/(u) D F(-^2

(that is, those forced by ft ¡x to be there). Let F' = Ft (DF — {/*}). Begin with

/,'=/|{(u,s,)}, (f'x,F') is determined (1.6(d)) and (/, F) <(/,', F'). Let ^ =

min 7)F-. Extending/,'r j» and calhng this extension/,'r v again, we can find l> F(v)

such that /,' r v completely describes /(e) fl'2 and, moreover, each s G f(v) nF{v)2

has > \\F'\\ ■ k many different extensions in /(e) n'2 (where ||F'|| is the number of

possible a's bounded by F').

Now let F* s* F' with dom(F*) = dom(F') be defined by F*(v) = I and equal to

F' at other arguments. Clearly, (/,', F*) > (F[, F') is determined too. The induction

assumption can be applied to yield (/,, F*) > (/,', F*) and w(l) G to such that for

different a (consistent with ( /,, F*))/, | a gives incompatible information on t t m(l).

4 However, in §2 we are using only c.a.c. posets. Hence, for the proof of our theorem, Lemma 5 of [M]

is perfectly sufficient.
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Next, we repeat this procedure for s2 etc., and find /„ f2,... ,fk with /. r ft < f} t ft

for i <j, such that/ relates to s¡ the same way/, relates to sx. Then, extending a little

more we can assume/1 u = /f u, and the following hold:

(1)/extends/| {(u,i,)}.

(2) (/, F) < (/, F*\ (/, T?) is determined and dom(J?) = dom(F'), F*(e) =

/(/) but F* is equal to F' on other arguments, and

(3) / r v forces that each s G /(e) DF<,,)2 has > ||F'|| • A: many different extensions

in/(e) n /(,)2.

(4) For different a's (consistent with (/, F*))/|a gives incompatible information

on tí 7w(/).

Extending/ furthermore (Lemma 1.10) calling again this extension by/, we can

assume m(i) = m (does not depend on i).

In the second stage of the proof of the lemma, we will find g, >f¡, such that the

following will hold:

(a) (/, F') < (g,, F'), but g,f e forces that every member of g,(e) nF(-r)2 has only

one extension in g,(e) n /(,)2 .

(ß)\i i ¥=j then g, | a and g ■ | a' give incompatible information onrfm whatever a

and a' (bounded by F' and consistent with g, and gy respectively) are.

The construction of the g, is inductive. Suppose now it is the turn of g, to be

defined. Call a (consistent with ( /, F*)) bad if the value of t t m decided by /. | a has

already been given by gj\a' for some y < /' and a' (consistent with (g , F')). There

are less than fc-||F'|| possible bad a's. Hence for each member of/(e) C\F<-v)2 (i.e.,

forced by /1 e to be there—which is the same as being forced by ft e to be there,

since (/, F') < (/, F')) we can find an extension in/(e) n/(,)2 which is not a(v) for

a bad a.

Define g, >f¡ such that (/, F') < (g,, F') and no member of g,(e) n/<!)2 is a(v)

for a bad a, and every member of g;(e) n F(>,)2 has only one extension in g,(e) n'(,)2.

It is clear that the g('s satisfy (a) and (/?). Finally let g = U1<(.<tg,- then g is as

required.    D

1.12. Projections of Q(P,). The map (/, F) h» (/r u, Fr u) is a projection of Q(P,,)

onto QiP^). Hence, if G is a generic filter over Q/P,,) then {( ft ft, Fr u) | ( /, F) G G}

is generic over Q(P^) (ft < rj).

1.13. M-generic conditions and filters. 77(N3) is the collection of all sets with

transitive closure of cardinality less than K3. P denotes an iteration of length tj < «2

of perfect posets. It will turn out that P^ G 77(N3). V = L is our ground model

(although we shall not use this fact in this section).

In what follows, M is a countable elementary substructure of 77(N3)and P G M is

a poset. Let us review some of the notions we shall need from Shelah's theory of

proper forcing.

Say that / G P is an M-generic condition (over P) if for every D G M, a dense

subset of P, and for every /' > / (in P) there are /* > /' and d G D n M with

</*=/*.

Say that G C P is an M-generic filter (over P) if G D M is a filter over POM and

G n D n M ¥= 0 whenever D E Mis dense in P.
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As will be clear later on, P,, will be an iteration of perfect posets of cardinality S,

(GCH is assumed in V) each satisfies the c.a.c. (countable antichain condition), the

iteration is taken with countable support (as explained in 1.3); it follows then (from

a general theorem of Shelah about proper forcing [SI]) that P^ satisfies the S2-a.c. In

fact, if rj < to2, then this theorem provides a dense subset of P of cardinality K,. Let

us describe this dense subset. (Laver's argument [L] is the prototype, but we cannot

apply it literally since our posets are not closed under arbitrary fusions.)

Define when / G Pa is essentially countable by induction on a. Any / G P, is

essentially countable ( / then is a function on 1 such that /(0) is a perfect tree). For a

successor ordinal: /G Pa+, is essentially countable when/r a is and when/(a) = a

is a name of a perfect tree of the following kind: a = (F,|iGö2) where E, C Pa is

always a countable collection of essentially countable conditions. (The interpretation

of a is the collection of all t Gö2 such that F, n Pa ^ 0.) For limit 8, f E Ps is

essentially countable if, for all a < 8, ft a is.

The proof of the N2-a.c. proceeds by showing that the essentially countable

conditions in P form a dense subset. Therefore we stipulate that P^ consists only of

essentially countable conditions. It easily follows now that P^ G 77(N3) (tj < to2).

Let P be a F-generic filter over Pr M[Pn] denotes the collection formed by

interpreting in V\Pn\ all the names which are in M. Similarly we understand

tfíNsXP,] (77(«3) is in V). It follows that 77(«3)[P„] = (77(«3))l/[p'!. (Use the

S2-a.c. of Pn and the fact that the cardinality of Pn is < N2.)

Suppose Pv E M and/is an M-generic condition (over P^), and/ G P^, then P^ is

an M-generic filter and M[PV] is an elementary substructure of 77(S3)KtP»1. (See

[SI].)
Denote by M the transitive structure isomorphic to M, and by -n: M -» M the

Mostowski collapse.

Put G = M D Pr Then 7r"G is an M-generic filter over ^(P^) and M[7r"G] is a

transitive generic extension of M. -n can be extended to collapse MfPJ onto

M[tt"G], and we continue to denote by tr this extension.

The next lemma shows the role of the poset Q(P,,) (defined in 1.8) is to provide

M-generic conditions over P .

1.14. Lemma. If G Ç M n Q(P„) is an M-generic filter over Q(P7)) and /EP,

satisfies e </ whenever (e, F) E G, then f is an M-generic condition over P

Proof. Let D E M be a dense subset of Pr Since Lemmas 1.9 and 1.10 hold in M

and since G is M-generic, there is a determined (g, F) G G such that g\a E D

whenever a is consistent with (g, F).

Given/' s=/(w.l.o.g. (/', F) is determined), use 1.6(e) to find a consistent with

(/', F). But g</' by assumption, so a is consistent with g and g\a <f'\a (by

1.6(b)). /' < /' | a ( 1.5(i)), so an extension of/' is found above g | a E D n M.

1.15. Definition of g and H. In the ground model  V, M is a countable

elementary substructure of 77(S3) and P^ G M. So there clearly is G C Q(P,) n M

which is an M-generic filter over Q(P,). For any such G we will define now g G P

and a sequence of names H (g and H depend on M, P^ and G). dom(g) = dom(H)

= M D tj, and, for u G M n tj, H(ft) and g(ft) are names in P^ forcing defined as
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follows. Actually, we put ourselves in ^[P^] (where P is K-generic over P ) and

describe the interpretations of g(ft) and H(ft); this will convince the reader that the

names H(/t) and g(u) can be defined in V.

Collect all (/, F) G G such that ft ft G fy for each such (/, F) look at the

interpretation of /(ft), f(¡i)P", and form the pair ((/(ft))p", F(ft)) (F(ft) is 0 if

ft G dom(F) and /(ft)p" is ö2 if ft £ dom(/)). The collection of all these pairs is

(H(ft))p", a subset (possibly empty) of Q(R(u)). (Where, remember, R(ft) is in V[Pß]

the perfect poset which is iterated in the next stage, P^ * R(u) is P +,.)

Suppose U - U{Fn"2|(F, n) E (H(ft))p*} is a perfect tree and even a member

of R(ft), then we set

g(n)Pß = U;   otherwise, g(/t)P" =«2.

1.16. Lemma, (in the notation of 1.15) Suppose fi G M, ft G tj, and f E P^ is such

that h t ft < f whenever (h, F) E G. Then

/lh H(fi) is an M[pJ-genm'c filter over Q(R(ft)).

Proof. Note that PM is the name of the generic filter. The definition of H implies

that/lh H(/t) = {(/¡(ft), F(/t)) | (h, F) E G). Since G is a filter, it is not too difficult

to check that /lh H(u) is a filter over Q(R(u)) n M[PJ. Why is this filter M[P;]-

generic?

Observe first that (since M ■< 77(S 3 ) and as the forcing relation can be defined in

M) M[PM] is forced (by /) to be an elementary substructure of 77(N3)K[P"1. (See

[SI].)
Let /</, G PM and D G M a name (in Fp") be given such that /, lh D is dense

open in Q(R(u)). Our aim is to prove/, lh D n H(ft) =£ 0, and then, by a density

argument for PM, the desired property of H(u) follows.

Find a name D' G M such that for any p E PM, p lh D' is dense open in Q(R(u)),

and if p lh D is dense open, then p lh D = D'.

Define now (in M)

E = {(«, F) G Q(P„+1)|«r ulr-P'(A(u), F(ft)) G D').

We claim that E is dense in Q(Pft+1). Indeed, given arbitrary (h, F) G 0^+,) (by

Lemma 1.9(b) we assume it is determined), we have /if ulh (/z(ft), F(ft)) has an

extension in D'. So we can find a name (a, n) such that h t ft lh (h(¡x), F(ft)) *£ (a, n)

G D'. Using Lemma 1.10 now, there is (g, Ft ft) > (h t ft, Fr ft) in Q/P^) such that

for every a consistent with (g, Fr ft) there is n(a) E u and g|a lh («(ft), F(fi)) <

(a, n(a)) E D'.

Let n s= any possible n(a). Then g\a lh (n(ft), F(ft) < (a, n(a)) < (a, n) G D'.

1.6(e) imphes that g lh (n(ft), F(fi)) < (a, n) G D'. So

(gU {(ft,a)},(Frft)U {(ft,n)})GF

and extends (h, F).

So F is dense. And since G n Q/P^+i) is M-generic (1.12) we can find (h, F) E E

D G. By the premise of the lemma h t fi </, and /</,, so /, lh («(ft), F(ft)) G D'.

Yet /, lh D' = D, so /, lh (h(n), F(ft)) G H(u) n D.    D
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2. Description of the iteration of Jensen's reals. L is the ground model, and the

following constructions are done there. Let (SJaGto,) be a O sequence. For

definiteness and absoluteness reasons we shall take the canonical diamond sequence

(see [J2]) in which Sa C a is the first (in the well-order of L) "counterexample" to

the sequence (S¡\i <a) when a is limit countable ordinal, and Sa+, = 0. It follows

that the definition of Sa is absolute for transitive structures in which this definition

can be carried out.

For every ux < f < u2 let 6t be the first constructible bijection of to, onto f.

Suppose PM has been defined, we want to describe the next step in the iteration.

Describing this step in terms of actual generic extensions, assume P is an L-generic

filter over P^ and (rt|f G ft) is the resulting L-generic sequence of reals over PA; we

have to define in L[(rr | f G ft)] = L[PM] a perfect poset R = R(ft) (the Jensen poset)

and then, if R is the name of that poset, set PM+, = P^ * R. (Or ft = 0 and we want

actually to construct the poset R(0).)

Let A = A(ft) C ux encode the generic sequence (rt|f G ft) in some canonical

straightforward way. For example, if ft > to,, define a relation Z on to, by (/,/) G Z

iff e^i) < O^j); also put Y = {(f, k)\k G re¿t)). Then ask A to encode Z and Y,

using the canonical correspondence between to, and to, X to,. So,

L[A] =L[(rf|f G ft)] = l[pJ    (or A = 0 in case ft = 0).

In L[A] we define inductively an increasing and continuous sequence (R, =

R,(u) | /' G to, ) of countable perfect posets; then we will set R(fi) = R = U/<u R,.

2.1. To begin with, R0 is the closure under finite unions of {("2)s\s G-2}; and for

limit 8, Rs = U/<SR,. Suppose R, is defined, the construction of R,+ , is described

below.

Set R,+ , = R, unless the following happens.

(1) 5, encodes (in some canonical obvious way) three objects: a

relation E¡ ÇZi X i and two ordinals a¡, b¡ smaller than i.

(E¡ X {a¡) X {b¡) which is a subset of i X i X i X i is encoded

by S¡ Ç ('.) Moreover, E¡ is well founded and (/, E¡) is a

model of ZF" (set theory without the power-set axiom). Put

(M, G) to be the transitive structure isomorphic with (/, E¡).

We also ask that /' G M is " the first uncountable cardinal"

there and that the isomorphism of /' onto M takes a, G i to

flf =Pi- 6 M a poset which is, in M, an iteration of length rj

of perfect posets. And o, G i is taken by that isomorphism to

bf which is a function in M.

(2) The decoding of A n / gives a sequence (s¡ | f G ¡i) of reals of

length ft and ji E M. This sequence is M-generic over P-,

where fi < rj and P- = {gr fi\g G P-}. (Or jt = 0.)

(3) When forming the extension N = M[(s?|f G jit)] we get

R, GÁ7. (In case ß = 0, Ñ= M.) For X G M, XN denotes the

interpretation of the name X in the generic extension N.
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In case (l)-(3) hold, we look_at Q(R,) and pick in L[A] some A'-generic filter, Q,,

over Q(R,) such that (bf(ß))N G Q, (if that is a condition in Q(R,)). In fact, great

care is given to the choice of Q¿ (in 2.5), but let us postpone that for awhile and see

what can be deduced so far. Let t be the generic tree of Q,. Finally let R, +, be the

closure under finite unions of R, U {F A 515 G R, & F A 5 ^ 0 }. R,+, is a per-

fect poset (see Lemma 1.2).

Let us denote the transitive model M by M(S¡) and the generic extension N by

M(S,)[A n i]. Observe that i <j -* M(S¡) Q M(Sj). (As i is countable in M(Sj) the

set S, can be defined there.)

2.2. Lemma. If X E M(S¡)[A D i][t] is a maximal antichain in Ri+l, then X is a

maximal antichain in Rjforj > i + 1.

Proof. By induction on/ If y is limit the argument is trivial since R- = U, R,.

Supposey = k + I, where k > i and Xis maximal in Rk. If Rk+, i= Rk,

M(Sk)[AC\k]

can be constructed and Rk is found there, so t is there and X E M(Sk)[A D k].

Lemma 1.2 gives the desired conclusion when V there is replaced by M(Sk)[A D k].

Using the absoluteness of incompatibility (§1) we get that if X in the lemma is

maximal antichain above U E R,+1, then it stays maximal above U in R.,/ > i + 1.

D

2.3. Lemma. In L[A] - L[PM], R satisfies the c.a.c.

Proof. The proof is by induction on ft. Assuming each R(ft'), ft' < ft, satisfies the

c.a.c. in ¿[P^], P^ is an iteration of proper posets each of cardinaltiy N,; hence P^

satisifes the X2-a.c. and is proper (see 1.13).

Let X E L[(rt | f G ft)] be a maximal antichain of R. We show X is countable. Let

X be the name of X in P^ forcing, and R the name of R. Find in L an elementary

substructure K < 77(S3) of cardinality S, such that

S. + lcAT   and   p., P„,R,X G K.

Put K = UaEu) Ma a union of a continuous and increasing chain of countable

elementary substructures of K (such that ft, P^, R, X G M0). Since K has cardinality

8,, there is in L a well-founded relation F on to, such that (to,, F) is isomorphic to

(K, G). By a standard coding (see 2.1(1)), we find constructible E' Ç ux which

encodes three objects: the relation F and two countable ordinals, one representing P^

(in (to,, F)) and the other an arbitrary condition on QÍP^) (for this argument it does

not matter which). The set {a | F' D a = Sa} is stationary; and remains so in F[PJ,

since PM is proper (see [SI]).

The following three sets are closed unbounded in to,.

{a|a = N,nMa},

[a\(Ma, E) is isomorphic to (a, E (1 a X a) and E n a X a is encoded by

F' n a),

{a | PM is Ma-generic over P^}.

This last set is closed unbounded since PA satisfies the X2-a.c. and P^ is, hence,

Ä"-generic over PA.
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Pick i in the intersection of those three closed unbounded sets such that E' D i —

S¡. Then S¡ encodes a transitive structure M which is isomorphic to M,. Let m:

M, -> M be the isomorphism. 77(8,) = i. 7r(PM) = P- is in M an iteration of perfect

posets (and jit = 7r(ft)). P- and some member of Q(P¿) are also decoded through S¡.

M,-[P ] •< 77(83)¿[P"1. P is Mrgeneric over P , so 7r"P is M-generic over P- and

N = M[tt"P ] is the collapse of MJP^]. We continue to use m to denote this collapse

function of MJP^] onto N. The sequence (rt | f G ft) and its code A are in M,-[P ]. So

■n((rt\Ç G ft» = (st |f G ß), encoded by tt(A) = A n i, is M-generic. Also,

(ij|f G jit) is the sequence of generic reals given by tr"P , hence N = M\A n i] =

M[(ss\£ Eß)].
Now, R G M,^] (since R G M¡) and R = Uy<-Ry, hence tr(R) = Uy</»(Ry)

(since / = 7t(N,)), but ir(R-) = Ry (since Ry is hereditarily countable) so that finally

tt(R) = Uj^Rj = R, G Ñ. Similarly X E M,.^], and tt(X) = X D R, E Ñ =

M(Si)[A n /'] is a maximal antichain of R,.

All conditions (l)-(3) in the definition of R,+ , are fulfilled, Lemmas 1.2 and 2.2

can be applied to derive that tr(X) is maximal in R. Hence ir(X) = X. And -n(X) is

countable.

2.4. Lemma (uniqueness of the generic object). Let R be an L[F^-generic filter

over R. Then R is the unique L[P^-generic filter over R in L^, R}.

Proof. The canonical generic real of R was defined at the beginning of §1. A

function t G"2 is called L^P^-generic over R (generic for short) if {U E R|t is a

branch of 7/} is an L[PJ-generic filter over R. By the duality between generic reals

and generic filters, it is enough to prove that the canonical generic real is the unique

generic function in L[P^, R].

Suppose S G R, t G LfP^] is a name in R-forcing and in ¿[P^]

S lhR t G"2 is a function different from the canonical generic function.

We would like to get an extension of S in R which forces "t is not generic".

By extending S and using the supposition, we can assume there are « G to and

e G"2 such that e G S but S lh rt n = e.

As in the proof of Lemma 2.3, there is / G to, such that S¡ encodes a transitive

structure M(S¡)—a model of ZF"—in which i is the first uncountable cardinal. And

such that the following holds: A n i encodes a generic sequence and

Â7=M(5,)[/4 n i]

is   a   generic  extension   via   P-.   N   is   the   transitive  collapse   of  M[P ]—an

elementary substructure of 77(N3)t[P»]—and R, 5, t G M[P ]. Moreover

(b^\ß)f = (S,0).
t is a name in R-forcing of a real; so, since R satisfies the c.a.c, t is hereditarily

countable and it(t) = r. Also tr(S) — S, and ir(R) — R¡. It follows that, in N,

S ¥n(-R)T G"2 is a function different from the canonical generic function.

Also, Slh"(R)Trn = e.
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Now, in Ñ, for each U E tt(R) = R, construct the following set D(U) Ç Q(R,).

D(U) = {(T, m) G Q(R,)| F C S and for some U' C U, U' E R„ FlhR'T is not a

branch of 17'}.

Claim. D(U) E N is dense above (S,0) in Q(R,) for any U E R,.

Proof. Let Í7 G R, be given. D(U) G N is clear since the definition is done in N.

For any (F, m) E Q(R,), F Q S, look for /c G to such that U Dk2 contains more

than 2m members. Then extend F to T such that F nm2 = T Dm2 and

(Vs G F rT2)(3e(í) G/c2)Fj' lh rf k = e(s).

Pick t E Unk2,t¥= e(s) for all s, and put U' = Ur Then T lh t is not a branch of

[/'. And (T, m) < (7", m).    G

Recall how Ri+, was defined: a tree t was derived from an AZ-generic filter Q,

over Q(R,). We choose 5, in such a way that S¡, through b^(S'\ points at (£,0), so

that (5,0) GQ,,

The D(U) are dense sets in Q(R,) above (S,0). Hence for any U G R, there is

(F, m) G Q, n D(U); it follows that there is U' C U, in R„ such that

FlhR,T is not a branch of U'. (The forcing is in N.) By Lemma 1.2 any maximal

antichain of R, in A/ remains a maximal antichain of R,+1; hence t is a name of a

branch also in the R,+, - forcing.

But since f C T it follows from Lemma 1.2 that

(*) FlhR+,Tisnotabranchof U' (inÑ[t]).

So in N[f], every U G R: has an extension t/' in R, such that (*) holds. But this is

also true for any U E R,+l: Because if U E R/+, — R,, say U = t A S* for some

S* E R, (to.l.o.g. U has this form), then of course U cannot have t as a branch.

(Recall 5 lh rt n = e, so Flh tï n = e, but e g 5 and a fortiori e g F A 5*.) Hence

there is in Af[F] a dense set of V E Rj+, for which (*) holds. So by Lemma 2.2 any

member of R is compatible with some such [/', Hence (*) holds in R for a dense set

of IP, hence T lh t is not generic.    D

2.5. Let us come back to the definition of R. We want to describe in more detail

how the filter Q, is actually chosen and then to use its special properties. Come back

to 2.1 (the section where R,+, is defined) and assume (l)-(3) hold. Let G G_L be the

first (in L canonical ordering) M = M(S¡)-generic filter over Q(P^) with bf E G (if

o,M G Q(P^)). Assume jit < ij (if ß = tj, Q, can be arbitrary). Let

H(fl)={(/(fT)^,F(/t))|where(/,F)GG}.

In case H(fl) is ¿V-generic over Q(R,), define Qi — H(ft); otherwise Q, can be an

arbitrary N-generic filter (in L[/l]).

This ends the description of the iteration: Pu is our final poset. In the next section

we show that in the generic extension L[PU ] the degrees of constructibility have

order-type u2. Then we conclude the theorem. Yet a major technical piece is
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missing; this is provided by the following:

2.6. Main lemma: The fusion lemma. In L, for any a E 77(83), tj G u2, and any

g0 E Pv there is a countable elementary substructure M < 77(8 3 ) with a E M, and a

condition g G P^ extending g0 such that the following is true.

{( f, F ) E M | ( /, F ) < ( g, F )} is an M-generic filter over Q^ ).

(It is clear that any two conditions in this set are compatible.)

Proof. As in the proof of 2.3, pick in L some elementary substructure K < 77(8 3)

with card(TC) = 8,, to, + 1 Ç K, and g0, tj.P^, a E K. Encode the model K, the

poset P , and the condition g0 by a subset F of to,. Put K = Ua6wMaa continuous

and increasing chain of countable elementary substructures of K (tj, P^, a E M0). As

in 2.3, find /' G ux such that M = M(S¡) is isomorphic to M¡, it: M, -» M is the

collapsing function, 77(8,) = i, and S, also points to P- =_w(Prj) and to (g, 0) where

g0 = 7r(g0). (In the_notation of 2.1, a™ = tt(P,) and bf = (g0, 0).) Let G be the

first constructible M-generic filter over Q(P^) containing ( g, 0 ).

G={77-'(g)|gGG}

is an M,-generic filter over Q(P^) containing (g0, 0). In 1.15 a condition g G P^ and

a function H were constructed with M, and G as parameters. The next lemma clearly

shows that M, is the required model and g is the required condition.

2.7. Lemma. If(f, F) E G then (/, F) =£ (g, F).

Proof. We show by induction on f G M, that for any (/, F) G G

(2.8) (/rf,Frf)*£(grf,Frf).

For f = 0 or limit ordinal there is no problem. So say f = u + 1. It is enough to

show g r ft lh (/(/x), F(ft)) < (g(ft), F(ft)), for any (/, F) G G.

The inductive assumption (2.8) and 1.12 and Lemma 1.14 imply that gr ¡i is an

M-generic condition over P^.

The argument proceeds in terms of actual generic extensions; let PM be an

L-generic filter over P^ with gr ft G P^. We intend to show that for any//, F) G G

the interpretation of g(ft) (which is denoted g(ft)p") is a subtree of /(ft)p*, and both

trees have the same intersection with F(,l)2.

Let A Ç to, be the canonical encoding of the generic sequence of reals provided by

P^. P^ is M,-generic over P^, hence ^"(P^ n M,) is M-generic over ^(P^) = P-. m can

be extended to collapse M,.[P,J (< 77(83)^^M) onto Ñ = M[ir"PM]. A E M,[PJ and

tt(A) = A Pi i encodes (s¡|f G ft)—the M-generic sequence of generic reals given

by w(P„). 7r(R(fi)) = R,(ft) = R,.. It follows that (l)-(3) of 2.1 hold and Ñ =
M(SJA n /]•

Recall how H(/t) is defined in L[PJ (1.15): All (/, F) G G such that /r ft G PM

were collected—but by induction these are all (/, F) G G, since gr ft G PM—then

H(ft)p" is formed by the pairs (/(ft)p*, F(ft)) thus obtained. g(ft)p" in turn, is the tree

derived from H(ft)p»—if that tree is in R(ft)—and is e2 otherwise. We will show in
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the following paragraph that the first possibility occurs, this obviously implies

(/(ft)^,F(ft))<(g(ft)^,F(ft))

whenever (/, F) G G (Lemma 1.16, and the display prior to Lemma 1.2.)

The induction hypothesis and Lemma 1.16 give that H(ft)p* is M^ï^j-generic over

Q(R(jti)). Since ir is the identity on the hereditarily countable sets, w"H(u)p» =

H(jtt)p*. Hence H(/t)p" is A^-generic over Q(R¡).

But 7r"H(ft)p" = {(f(ß)N, F(ß))\(f, F) G G} follows from the elementarily of 77,

and this set, called H(fT) in 2.5, is the A-generic filter Q, used to construct R,+,. This

is why the tree derived from H(u)p" is in R,+, C R(ft).

3. The degrees of constructibility have order-type u2. Let PUi be an L-generic filter

over Pu , and for a < to2 let Pa be the projection of PUi in Pa (i.e., Pa = {ft a \f E

For every real r C u in L[PU ] let tj(a-) < to2 be the least ordinal tj such that

r E L[P ]. The headline of this section is consequence of the next lemma.

3.1. Lemma. For r and r' reals in L[PU ]

r' G L[r] if and only ifr¡(r') < fj(r).

Proof. The nontrivial direction is the right to left implication. So assume

Tj(r') < Tj(r-) and let us prove that r' E L[r].

Put tj = Tj(r) and tj' = Tj(r'). Let r and r' be names of r and r' in Pr Pick g0 G P^

such that g0 lh (Vf G Tj)r G L[P(].

Lemma 2.6 has the form "for any g0 G P^ and a E 77(83) there is g G P'   g0 < g,

and M such that...". This form indicates that the set of all such g's is dense in Pr

Hence there is in L a countable M ■< 77(8 3) such that g0, r,r', tj, tj' G M, and there

is g G P,,g0< g, suchthat

(3.2)    {(/, F) 6P,n M|(/, F)<(g, F)} is an M-generic filter over Q/P,, ).

g is an M-generic condition over P^ (Lemma 1.14), hence P^ is an M-generic filter

over P^. Let M be the collapse of M, then M[PV] is collapsed to N = M[7r(Pri)] (77

denotes the Mostowski collapsing isomorphism). Let (r¡\i E tj) be the sequence of

generic reals obtained from P^. (r, |/'G tj)G M[P^]; put (s,-|/' G 7t(tj) = tj)

= W«/-,.|/Gtj»GÄ.

The proof that r' E L[r] consists of two parts:

(1) showing that r' E L[(s¡| / G tj)] and then,

(2) <s,|/ G ij)G L[r],

(1) is evident, as r' G M[P^] and

■n(r') =r' E M [w(pj] = M [(s,\i E tj)],    and   MGL.

(2) Or actually (r¡\i G tj n M)G L[r] is concluded below. For each ft G tj D M

and « G to define in L a subset D(fi, n) of Q/P,,) as follows.

(/, F) G Din, n) iff (/, F) G Q(P„) is incompatible with (g0, 0)

or (/, F) is determined ft G dom(F) and n «£ F(ft) and there is a

collection of pairwise disjoint basic open sets {Ca | a consistent with

(/, F)} such that for each such a, f\ a lhp,r G C„.
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Remark that the function which associates to each (/, F) G 7J>(ft, n) compatible

with (g0, 0) the correspondence a h-> Ca, is constructible.

Lemmas 1.9 and 1.11 imply that 7J>(u, n) is dense in Q(P1)). In fact £>(u, n) G M.

Hence, by (3.2) there is (/, F) G 7>(/t, n) such that (/, F) < (g, F).

Let (/, F) be any member of D(ii, n) such that (/, F) < (g, F). Since (g0, 0) <

(g, 0) it follows that (g0, 0) and (/, F) are compatible in Q(P^) (by (g, F)).

Hence, (/, F) is determined and there are disjoint basic sets Ca, for a consistent

with (/, F), such that/| a lh r G Ca. But a is consistent with (/, F) iff a is consistent

with (g, F) and in that case f\a < g\a (see Lemmas 1.6b and 1.9.) Hence g\a lh r G

Ca, for each such a. It follows that for each such a

g\\p*r E Ca ~ a = (r,r F(i)\i E dom(F)).

But g G P,,, so

/•G C0~ct= (r,.rF(/)|/ G Dom(F)).

This holds for any ft G tj n M and n G to and (/, F) G 7)(ft, «) with (/, F) *s

(g, F). The sequence (7)(ft, «)|ft G tj fl M, « G to) is in L. So (r,|/ G tj n M)G

L[r]: To know what is rßl n, pick any (f, F) E D(¡i, n) with (/, F) < (g, F), then

find the only a consistent with (/, F) such that r G Ca—we have r^t n = ct(u)t n.

4. Proof of the theorem: minimality of the extension. Let W be a transitive model

of set theory included in L[PU ] and including L. Suppose that the negation of the

continuum hypothesis holds in W; we have to prove W = L[PU ]. Since W contains

82 many reals, and since the degrees of constructibility are well ordered of

order-type u>2, W contains all the reals of L[PWJ. The desired property of W follows

once we show ( r¡ | i E to2 ) G W. This is an easy inductive consequence of Lemma

2.4: r, must be in the/th degree of constructibility and it is the only real in that

equivalence class which is L[(r¡\i <y)]-generic over R(/).
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