Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Weak restricted and very restricted operators on $ L\sp{2}$

Author: J. Marshall Ash
Journal: Trans. Amer. Math. Soc. 281 (1984), 675-689
MSC: Primary 42A45; Secondary 42A50, 47B38
MathSciNet review: 722768
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A battlement is a real function with values in $ \{ 0,1\} $ that looks like a castle battlement. A commuting with translation linear operator $ T$ mapping step functions on $ {\mathbf{R}}$ into the set of all measurable functions on $ {\mathbf{R}}$ and satisfying $ \parallel Tb{\parallel_2} \leqslant C\parallel b{\parallel_2}$ for all battlements $ b$ is bounded on $ {L^2}({\mathbf{R}})$. This remains true if the underlying space is the circle but is demonstrably false if the underlying space is the integers. Michael Cowling's theorem that linear commuting with translation operators are bounded on $ {L^2}$ if they are weak restricted $ (2,2)$ is reproved and an application of this result to sums of exponentials is given.

References [Enhancements On Off] (What's this?)

  • [1] P. Ash, J. M. Ash and R. D. Ogden, A characterization of isometries, J. Math. Anal. Appl. 60 (1977), 417-428. MR 0451022 (56:9312)
  • [2] M. Cowling, Some applications of Grothendieck's theory of topological tensor products in harmonic analysis, Math. Ann. 232 (1978), 273-285. MR 0493165 (58:12196)
  • [3] R. A. Hunt, On $ L(p,q)$ spaces, Enseign. Math. 12 (1966), 249-275. MR 0223874 (36:6921)
  • [4] K. de Leeuw, On $ {L^p}$-multipliers, Ann. of Math. 81 (1965), 364-379. MR 0174937 (30:5127)
  • [5] G. G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950), 37-55. MR 0033449 (11:442d)
  • [6] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
  • [7] -, An extension of a theorem of Marcinkiewicz and some of its applications, Indiana Univ. Math. J. 8 (1959), 263-284. MR 0107163 (21:5888)
  • [8] M. Zafran, Multiplier transformations of weak type, Ann. of Math. 101 (1975), 34-44. MR 0370035 (51:6264)
  • [9] A. Zygmund, Trigonometric series, vol. I, (2nd rev. ed.), Cambridge Univ. Press, New York, 1968. MR 0236587 (38:4882)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A45, 42A50, 47B38

Retrieve articles in all journals with MSC: 42A45, 42A50, 47B38

Additional Information

Keywords: Operator, weak restricted type $ (2,2)$, commuting with translation, convolution operator, multiplier
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society