Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Approximation in the mean by solutions of elliptic equations


Author: Thomas Bagby
Journal: Trans. Amer. Math. Soc. 281 (1984), 761-784
MSC: Primary 31B35; Secondary 31B15, 35J99
DOI: https://doi.org/10.1090/S0002-9947-1984-0722773-6
MathSciNet review: 722773
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A result analogous to the Vituškin approximation theorem is proved for mean approximation by solutions of certain elliptic equations.


References [Enhancements On Off] (What's this?)

  • [1] D. R. Adams and J. C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc. 37 (1973), 529-534. MR 0328109 (48:6451)
  • [2] I. Babuska, Stability of the domain with respect to the fundamental problems in the theory of partial differential equations, mainly in connection with the theory of elasticity. I, II, Czechoslovak Math. J. 11 (86) (1961), 76-105, 165-203. (Russian)
  • [3] T. Bagby, Quasi topologies and rational approximation, J. Funct. Anal. 10 (1972), 259-268. MR 0355058 (50:7535)
  • [4] V. I. Burenkov, On the approximation of functions in the space $ W_p^r(\Omega )$ by functions with compact support for an arbitrary open set $ \Omega$, Trudy Mat. Inst. Steklov. 131 (1974), 51-63; English transl., Proc. Steklov Inst. Math. 131 (1974), 53-66. MR 0367643 (51:3885)
  • [5] A. P. Calderón, Lecture notes on pseudo differential operators and elliptic boundary value problems, Cursos de Matemática 1, Instituto Argentino de Matematica, Buenos Aires, 1976.
  • [6] L. Carleson, Mergelyan's theorem on uniform polynomial approximation, Math. Scand. 15 (1964), 167-175. MR 0198209 (33:6368)
  • [7] C. Fernström and J. C. Polking, Bounded point evaluations and approximation in $ {L^p}$ by solutions of elliptic partial differential equations, J. Funct. Anal. 28 (1978), 1-20. MR 0481468 (58:1584)
  • [8] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969. MR 0410387 (53:14137)
  • [9] R. Harvey and J. C. Polking, A notion of capacity that characterizes removable singularities, Trans. Amer. Math. Soc. 169 (1972), 183-195. MR 0306740 (46:5862)
  • [10] -, A Laurent expansion for solutions to elliptic equations, Trans. Amer. Math. Soc. 180 (1973), 407-413. MR 0320494 (47:9031)
  • [11] V. P. Havin, Approximation in the mean by analytic functions, Dokl. Akad. Nauk SSSR 178 (1968), 1025-1028; English transl., Soviet Math. Dokl. 9 (1968), 245-248. MR 0224830 (37:429)
  • [12] L. I. Hedberg, Approximation in the mean by analytic functions, Trans. Amer. Math. Soc. 163 (1972), 157-171. MR 0432886 (55:5866)
  • [13] -, Non-linear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299-319. MR 0328088 (48:6430)
  • [14] -, Approximation in the mean by solutions of elliptic equations, Duke Math. J. 40 (1973), 9-16. MR 0312071 (47:633)
  • [15] -, Removable singularities and condenser capacities, Ark. Mat. 12 (1974), 181-201. MR 0361050 (50:13496)
  • [16] -, Two approximation problems in function spaces, Ark. Mat. 16 (1978), 51-81. MR 499137 (80c:46042)
  • [17] -, Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem, Acta Math. 147 (1981), 237-264. MR 639040 (83g:46032)
  • [18] L. I. Hedberg and T. H. Wolff, Thin sets in nonlinear potential theory (to appear).
  • [19] L. Hörmander, Linear partial differential operators, Academic Press, New York, 1963.
  • [20] F. John, Plane waves and spherical means applied to partial differential equations, Interscience, New York, 1955. MR 0075429 (17:746d)
  • [21] M. V. Keldys, On the solubility and stability of the Dirichlet problem, Uspehi Mat. Nauk 8 (1941), 171-231; English transl., Amer. Math. Soc. Transl. (2) 51 (1966), 1-73. MR 0005249 (3:123f)
  • [22] P. Lax, A stability theory of abstract differential equations and its applications to the study of local behaviors of solutions of elliptic equations, Comment. Pure Appl. Math. 9 (1956), 747-766. MR 0086991 (19:281a)
  • [23] N. S. Landkof, Foundations of modern potential theory, "Nauka", Moscow, 1966; English transl., Springer-Verlag, New York, 1972. MR 0350027 (50:2520)
  • [24] P. Lindberg, $ L^p$-approximation by analytic functions in an open region, Uppsala Univ. Dept. of Math. Report No. 1977:7.
  • [25] -, A constructive method for $ L^p$-approximation by analytic functions, Ark. Mat. 20 (1982), 61-68. MR 660125 (84j:30059)
  • [26] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolutions, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 271-355. MR 0086990 (19:280a)
  • [27] V. G. Maz'ja, On $ (p,l)$-capacity, imbedding theorems, and the spectrum of a self adjoint elliptic operator, Izv. Akad. Nauk SSSR Ser. Math. 37 (1973), 356-385; English transl., Math. USSR-Izv. 7 (1973), 357-387. MR 0338766 (49:3530)
  • [28] S. N. Mergeljan, Uniform approximations to functions of a complex variable, Uspehi Mat. Nauk 7 (1952), 31-122; English transl., Amer. Math. Soc. Transl. (1) 101 (1954).
  • [29] A. G. O'Farrell, Metaharmonic approximation in Lipschitz norms, Proc. Roy. Irish Acad. Sect. A 75 (1975), 317-330. MR 0402372 (53:6193)
  • [30] J. C. Polking, Approximation in $ L^p$ by solutions of elliptic partial differential equations, Amer. J. Math. 94 (1972), 1231-1244. MR 0324215 (48:2567)
  • [31] J. C. Polking, A Leibniz formula for some differentiation operators of fractional order, Indiana Univ. Math. J. 21 (1972), 1019-1029. MR 0318868 (47:7414)
  • [32] C. Runge, Zur Theorie der eindeutigen analytischer Funktionen, Acta Math. 6 (1885), 229-244. MR 1554664
  • [33] È. M. Saak, A capacity condition for a domain with a stable Dirichlet problem for higher order elliptic equations, Mat. Sb. 100(142) (1976), 201-209; English transl., Math. USSR Sb. 29 (1976), 177-185. MR 0412592 (54:714)
  • [34] G. E. Silov, Generalized functions and partial differential equations, Gordon & Breach, New York, 1968. MR 0230129 (37:5694)
  • [35] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)
  • [36] A. G. Vituskin, Analytic capacity of sets and problems in approximation theory, Uspehi Mat. Nauk 22 (1967), 141-199; English transl., Russian Math. Surveys 22 (1967), 139-200. MR 0229838 (37:5404)
  • [37] B. Weinstock, Uniform approximation by solutions of elliptic equations, Proc. Amer. Math. Soc. 41 (1973), 513-517. MR 0340794 (49:5544)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31B35, 31B15, 35J99

Retrieve articles in all journals with MSC: 31B35, 31B15, 35J99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0722773-6
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society