Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions


Authors: C. Ward Henson and Lee A. Rubel
Journal: Trans. Amer. Math. Soc. 282 (1984), 1-32
MSC: Primary 03B25; Secondary 03C05, 32A22
DOI: https://doi.org/10.1090/S0002-9947-1984-0728700-X
Correction: Trans. Amer. Math. Soc. 294 (1986), 381.
MathSciNet review: 728700
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study identities between certain functions of many variables that are constructed by using the elementary functions of addition $ x+y$, multiplication $ x \cdot y$, and two-place exponentiation $ x^y$. For a restricted class of such functions, we show that every true identity follows from the natural set of eleven axioms. The rates of growth of such functions, in the case of a single independent variable $ x$, as $ x \to \infty $, are also studied, and we give an algorithm for the Hardy relation of eventual domination, again for a restricted class of functions. Value distribution of analytic functions of one and of several complex variables, especially the Nevanlinna characteristic, plays a major role in our proofs.


References [Enhancements On Off] (What's this?)

  • [BIS] A. Biancofiore and W. Stoll, Another proof of the lemma of the logarithmic derivative in several complex variables, Recent Developments in Several Complex Variables, Princeton Univ. Press, Princeton, N.J., 1981, pp. 29-45. MR 627748 (83i:32007)
  • [BRO] W. D. Brownawell, A measure of linear independence for some exponential functions. II, Canad. J. Math. 31 (1979), 341-346. MR 0498422 (58:16547b)
  • [BOS] M. Boshernitzan, An extension of Hardy's class $ L$ of ``orders of infinity,'' J. Analyse Math. 39 (1981), 235-255. MR 632463 (82m:26002)
  • [CAR] H. Cartan, Sur les systèmes de fonctions holomorphes d'variétés linéaires lacunaires et leurs applications, Ann. Sci. École Norm. Sup. (3) 64 (1928), 255-346. MR 1509288
  • [EHR] A. Ehrenfeucht, Polynomial functions with exponentiation are well-ordered, Algebra Universalis 3 (1973), 261-262. MR 0332582 (48:10908)
  • [GAH] P. M. Gauthier and W. Hengartner, The value distribution of most functions of one or several complex variables, Ann. of Math. (2) 96 (1972), 31-52. MR 0306536 (46:5662)
  • [HAR] G. H. Hardy, Orders of infinity, Cambridge Tracts in Math. and Math. Phys., No. 12, Cambridge Univ. Press, 1910; Reprint, Hafner, New York.
  • [HAY] W. K. Hayman, Meromorphic functions, Oxford Univ. Press, Oxford, 1964. MR 0164038 (29:1337)
  • [HIO] G. Hiromi and M. Ozawa, On the existence of analytic mappings between two ultrahyperelliptic surfaces, Kōdai Math. Sem. Rep. 17 (1965), 281-306. MR 0188429 (32:5867)
  • [KUJ] R. O. Kujala, Functions of finite $ \lambda $-type in several complex variables, Trans. Amer. Math. Soc. 161 (1971), 327-358. MR 0281943 (43:7657)
  • [LEV] H. Levitz, An ordered set of arithmetic functions representing the least $ \varepsilon $-number, Z. Math. Logik Grundlag. Math. 21 (1975), 115-120. MR 0371627 (51:7845)
  • [MAC] A. Macintyre, The laws of exponentiation, Model Theory and Arithmetic, Lecture Notes in Math., vol. 890, Springer-Verlag, 1981, pp. 185-197. MR 645003 (83f:03037)
  • [MAR] C. F. Martin, Equational theories of natural numbers and transfinite ordinals, Ph.D. Thesis, Berkeley, 1973.
  • [NEV I] R. Nevanlinna, Über die Eigenschaften meromorpher Functionen in einem Winkelraum, Acta Soc. Sci. Fenn. 50 (1925).
  • [NEV II] -, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
  • [PAL] R. S. Palais, Some analogues of Hartogs' theorem in an algebraic setting, Amer. J. Math. 100 (1978), 387-405. MR 0480509 (58:670)
  • [RIC I] D. Richardson, Some undecidable problems involving elementary functions of a real variable, J. Symbolic Logic 33 (1968), 514-520. MR 0239976 (39:1330)
  • [RIC II] -, Solution of the identity problem for integral exponential functions, Z. Math. Logik Grundlagen. Math. 15 (1969), 333-340. MR 0262068 (41:6678)
  • [RON] L. I. Ronkin, Introduction to the theory of entire functions of several variables, Transl. Math. Monographs, vol. 44, Amer. Math. Soc., Providence, R.I., 1974. MR 0346175 (49:10901)
  • [RUD] W. Rudin, Function theory in polydisks, Benjamin, New York, 1969. MR 0255841 (41:501)
  • [STO] W. Stoll, Value distribution and the lemma of the logarithmic derivative in polydisks, Internat. J. Math. Math. Sci. (to appear).
  • [TAB] B. A. Taylor, The fields of quotients of some rings of entire functions, Entire Functions and Related Parts of Analysis, Proc. Sympos. Pure Math., vol. 11, Amer. Math. Soc., Providence, R.I., 1968, pp. 468-474. MR 0240329 (39:1678)
  • [TAW] W. Taylor, Equational logic, supplement to Houston J. Math. 1979. MR 546853 (80j:03042)
  • [TSU] M. Tsuji, On Borel's directions of meromorphic functions of finite order. I, Tôhoku Math. J. 2 (1950), 97-112. MR 0041224 (12:815e)
  • [VVD] L. van den Dries, Exponential rings, exponential polynomials and exponential functions (preprint). MR 745594 (85j:13040)
  • [VIT] A. Vitter, The lemma of the logarithmic derivative in several complex variables, Duke Math. J. 44 (1977), 89-104. MR 0432924 (55:5903)
  • [WIL I] A. Wilkie, private communication.
  • [WIL II] -, On exponentiation--a solution to Tarski's High School Algebra Problem (preprint).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03B25, 03C05, 32A22

Retrieve articles in all journals with MSC: 03B25, 03C05, 32A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0728700-X
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society