Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Estimates for eigenfunctions and eigenvalues of nonlinear elliptic problems


Author: Chris Cosner
Journal: Trans. Amer. Math. Soc. 282 (1984), 59-75
MSC: Primary 35P30; Secondary 35J55
DOI: https://doi.org/10.1090/S0002-9947-1984-0728703-5
MathSciNet review: 728703
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider solutions to the nonlinear eigenvalue problem

$\displaystyle (*)\quad A(x,\vec u)\vec u + \lambda f(x,\vec u) = 0\:\quad {\tex... ...,\quad \vec u{\text{ = }}0,\quad {\text{on}}\partial \Omega ,\quad \vec{u} = 0,$

where (*) is a quasilinear strongly coupled second order elliptic system of partial differential equations and $ \Omega \subseteq \mathbf{R}^{n}$ is a smooth bounded domain. We obtain lower bounds for $ \lambda$ in the case where $ f(x,\vec u)$ has linear growth, and relations between $ \lambda ,\Omega $, and ess sup$ \vert\vec u\vert$ when $ f(x,\vec u)$ has sub- or superlinear growth. The estimates are based on integration by parts and application of certain Sobolev inequalities. We briefly discuss extensions to higher order systems.

References [Enhancements On Off] (What's this?)

  • [1] R. Adams, Sobolev spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92. MR 0162050 (28:5252)
  • [3] H. Amann and M. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J. 27 (1978), 779-790. MR 503713 (80a:35047)
  • [4] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. MR 0370183 (51:6412)
  • [5] C. Bandle, Isoperimetric inequalities for a nonlinear eigenvalue problem, Proc. Amer. Math. Soc. 56 (1976), 243-246. MR 0477402 (57:16930)
  • [6] -, Isoperimetric inequalities and applications, Monographs Stud. Math., no. 7, Pitman, Boston, Mass., 1980.
  • [7] J. Barta, Sur la vibration fondamentale d'une membrane, C. R. Acad. Sci. Paris Sér. 204 (1937), 472.
  • [8] M. Berger, An eigenvalue problem for nonlinear partial differential equations, Trans. Amer. Math. Soc. 120 (1965), 145-184. MR 0181821 (31:6047)
  • [9] F. Browder, Infinite dimensional manifolds and non-linear elliptic eigenvalue problems, Ann. of Math. (2) 82 (1965), 459-477. MR 0203249 (34:3102)
  • [10] D. De Figueiredo, P.-L. Lions and R. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), 41-63. MR 664341 (83h:35039)
  • [11] C. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Flache und gleicher Spannung die kreisformige tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. Wiss. Math.-Phys., Munich, 1923, pp. 169-172.
  • [12] G. Fichera, Il calcolo degli autovalori, Boll. Un. Mat. Ital. (4) 1 (1968), 33-95. MR 0229085 (37:4663)
  • [13] A. Friedman, Partial differential equations, Krieger, New York, 1976. MR 0454266 (56:12517)
  • [14] B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, Conference Nonlinear Partial Differential Equations in Engineering and Applied Science (R. Stenberg, A. Kalinowski and J. Papadakis, eds.), Dekker, New York, 1980. MR 577096 (83m:35059)
  • [15] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. MR 544879 (80h:35043)
  • [16] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883-901. MR 619749 (82h:35033)
  • [17] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin and New York, 1977. MR 0473443 (57:13109)
  • [18] J. Hersch, Physical interpretation and strengthening of M. H. Protter's method for vibrating nonhomogeneous membranes; its analogue for Schrödinger's equation, Pacific. J. Math. 11 (1962), 971-980. MR 0151715 (27:1699)
  • [19] E. Krahn, Über eine van Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), 97-100. MR 1512244
  • [20] -, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A9 (1926), 1-44.
  • [21] R. Kramer, Sub- and super-solutions of quasilinear elliptic boundary value problems, J. Differential Equations 28 (1978), 278-283. MR 0481500 (58:1616)
  • [22] N. Levinson, Positive eigenfunctions for $ \Delta u + \lambda f(u) = 0$, Arch. Rational Mech. Anal. 11 (1962), 258-272. MR 0145216 (26:2751)
  • [23] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238. MR 0500557 (58:18161)
  • [24] L. Payne, Isoperimetric inequalities and their applications, SIAM Rev. 9 (1967), 453-488. MR 0218975 (36:2058)
  • [25] L. Payne and I. Stakgold, Nonlinear problems in nuclear reactor analysis, Nonlinear Problems in the Physical Sciences and Biology (I. Stakgold, D. Joseph and D. Sattinger, eds.), Lecture Notes in Math., vol. 322, Springer-Verlag, Berlin and New York, 1973.
  • [26] L. Payne and H. Weinberger, Lower bounds for vibration frequencies of elastically supported membranes and plates, J. Soc. Indust. Appl. Math. 5 (1957), 171-182. MR 0092431 (19:1110c)
  • [27] S. Pohozaev, Eigenfunctions of the equation $ \Delta u + \lambda f(u) = 0$, Dokl. Akad. Nauk SSSR 165 (1965), 36-39; English transl., Soviet Math. Dokl. 6 (1965), 1408-1411. MR 0192184 (33:411)
  • [28] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Princeton Univ. Press, Princeton, N. J., 1951.
  • [29] M. Protter, Vibrations of a nonhomogeneous membrane, Pacific J. Math. 9 (1959), 1249-1255. MR 0108632 (21:7348)
  • [30] -, Lower bounds for the first eigenvalue of elliptic equations, Ann. of Math. (2) 71 (1960), 423-444. MR 0111923 (22:2781)
  • [31] -, The generalized spectrum of second order elliptic systems, Rocky Mountain J. Math. 9 (1979), 503-518. MR 528748 (80d:35117)
  • [32] M. Protter and H. Weinberger, On the spectrum of general second order operators, Bull. Amer. Math. Soc. 72 (1966), 251-255. MR 0190527 (32:7939)
  • [33] P. Schaefer and R. Sperb, Maximum principles and bounds in some inhomogeneous elliptic boundary value problems, SIAM J. Math. Anal. 8 (1977), 871-878. MR 0492825 (58:11889)
  • [34] C. Simader, On Dirichlet's boundary value problem, Lecture Notes in Math., vol. 268, Springer-Verlag, Berlin and New York, 1972. MR 0473503 (57:13169)
  • [35] R. Sperb, Maximum principles and their applications, Academic Press, New York, 1981. MR 615561 (84a:35033)
  • [36] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. MR 0463908 (57:3846)
  • [37] R. Turner, A priori bounds for positive solutions of nonlinear elliptic equations in two variables, Duke Math. J. 41 (1974), 759-774. MR 0364859 (51:1113)
  • [38] H. Weinberger, Upper and lower bounds for eigenvalues by finite difference methods, Comm. Pure Appl. Math 9 (1956), 613-623. MR 0084185 (18:826a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35P30, 35J55

Retrieve articles in all journals with MSC: 35P30, 35J55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0728703-5
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society