BRAUER’S HEIGHT CONJECTURE
FOR p-SOLVABLE GROUPS

BY

DAVID GLUCK AND THOMAS R. WOLF

ABSTRACT. We complete the proof of the height conjecture for p-solvable groups, using the classification of finite simple groups.

Introduction. The height conjecture is the statement that a p-block of a finite group has an abelian defect group if and only if all ordinary irreducible characters in the block have height zero.

While a proof of this conjecture for general finite groups seems remote, considerable progress has been made toward proving it for p-solvable groups. Fong [5] proved that all characters in a block with abelian defect group have height zero in a p-solvable group, and he proved the converse direction for the principal block [5] and for solvable groups in the case that p is the largest prime divisor of the group order [6].

Recently [24, 8], the converse direction has been established for all solvable groups. In this paper we prove the converse direction for all p-solvable groups, assuming the classification of finite simple groups.

In its general outline this paper resembles [8], where we proved the height conjecture for solvable groups. The reader is assumed to have some familiarity with [8].

Now we state our main results, the analogs of the main results of [8].

THEOREM A. Suppose that N ≤ G, that G/N is p-solvable, that ϕ ∈ Irr(N), and that \(p \mid (\chi(1)/\varphi(1)) \) for all \(\chi \in \text{Irr}(G \mid \varphi) \). Then the p-Sylow subgroups of G/N are abelian.

THEOREM B. Let B be a p-block of a p-solvable group with defect group D. If every ordinary irreducible character in B has height zero, then D is abelian.

THEOREM C. Suppose that N ≤ G, that G/N is p-solvable, and that ϕ ∈ Irr(N). Suppose that \(e \) is an integer such that \(p^{e+1} \) does not divide \(\chi(1)/\varphi(1) \) for all \(\chi \in \text{Irr}(G \mid \varphi) \). Then the derived length of a p-Sylow subgroup of G/N is at most \(2e + 1 \).

THEOREM D. Let B and D be as in Theorem B. If every ordinary irreducible character in B has height at most \(e \), then the derived length of D is at most \(2e + 1 \).
Theorems B, C and D follow from Theorem A as in [8], so the rest of this paper is devoted to the proof of Theorem A.

The next proposition, essentially proved by Fong [6], describes the minimal counterexample to Theorem A. Note that N and φ in the statement of Theorem A correspond to Z and λ in the statement of Proposition 0, and that N in the statement of Proposition 0 does not correspond to any subgroup in the statement of Theorem A.

Proposition 0. Let G be a minimal counterexample to Theorem A. Then G has normal subgroups $Z \leq N \leq K$, and Z has a faithful linear character λ, such that the following conditions are satisfied:

1. $Z = O_p(G)$ is cyclic and central in G.
2. N/Z is a self-centralizing p-chief factor of G.
4. $G = O^p(G)$.
5. If $V = \operatorname{Irr}(N/Z)$, the irreducible $GF(p)[G/N]$-module dual to N/Z, then every element of V is centralized by some p-Sylow subgroup of G/N.
6. $p | \chi(1)$ for all $\chi \in \operatorname{Irr}(G|\lambda)$.

Proof. This follows as in Steps 1–4 of the proof of [8, Theorem 4.4]. The assumption in that theorem, that $p = 3$, is irrelevant in Steps 1–4, as is the assumption that G/Z is solvable rather than merely p-solvable.

The notation of Proposition 0 is used in the following summary of the contents of this paper.

After some preliminary lemmas on simple groups in §1, we consider in §2 the case that V is an imprimitive $GF(p)[G/N]$-module. We use a variety of facts about permutation groups and character degrees of groups of Lie type to show that G must be solvable.

In §3 we consider the case that V is a primitive $GF(p)[G/N]$-module and $F(G/N) = F^*(G/N)$, where F and F^* denote the Fitting and generalized Fitting subgroups. We use a variant of the estimation technique in [8, §2] to show that G must be solvable.

In §4 we examine the remaining case that V is primitive and $F(G/N) \neq F^*(G/N)$. We use standard facts about orders, automorphisms, and multipliers of groups of Lie type and a result on permutation groups from §2 to show that $\operatorname{Irr}(G|\lambda)$ contains a character of degree divisible by p. This contradicts condition (6) in Proposition 0 and so completes the proof of Theorem A.

1. This section contains some general lemmas which are useful in working with nonsolvable p-solvable groups.

Lemma 1.1. Let p be a prime number and let n be a positive integer. Suppose that neither of the following situations occurs:

i. $n = 6$ and $p = 2$.
ii. $n = 2$ and p is a Mersenne prime.
Then there is a prime number \(r \) such that \(r \mid p^n - 1 \) and \(r \mid p^m - 1 \) for \(0 < m < n \). Such a prime number \(r \) is called a primitive divisor of \(p^n - 1 \).

Proof. See [8, Lemma 3.3].

Lemma 1.2. Let \(S \) be a simple adjoint group of Lie type. Let \(d = |Z(G)| \), where \(G \) is the universal group of the same type as \(S \). Then:

(i) \(d \mid |S| \).

(ii) If \(p \) is a prime number and \(p \mid |S| \), then \(p > d \).

(iii) There exists a prime number \(r > 3 \) such that \(r \mid |S| \), \(r \mid d \), and \(r \) is greater than the order \(l \) of the group of field automorphisms of \(S \).

Proof. To prove (i) and (ii) we may assume that \(G = A_n(q) \) or \(G = A_n(2, q) \) (see [9, p. 491]). Then \(d = (n + 1, q \pm 1) \), and we may assume that \(n > 3 \). Since \(q^j - 1 \) divides \(|G| \) whenever \(j \) is even and \(j \leq n + 1 \), it follows that \((q^4 - 1)(q^2 - 1) \) divides \(|G| \) and \(n + 1 < p - 1 \). Then \(d^2 \| |G| \), \(d \| |G/Z(G)| \), and \(p > n + 1 \). This proves (i) and (ii).

To prove (iii), write \(q = q_0^l \) for a prime number \(q_0 \) and a positive integer \(l \). If \(G \) is not \(A_n(q) \) or \(2A_n(q) \), there is an integer \(m > 2 \) such that \((q^m + 1) \| |G| \). If \(G = 2A_n(q) \), there is an integer \(m > 3 \) such that \(m > n \) and \((q^m + 1) \| |G| \). In either case, let \(r \) be a primitive divisor of \(q^{2m} - 1 = q_0^{2ml} - 1 \), allowing \(r = 7 \) if \(q^2 = 26 \). Then \(r \| |G| \), \(2ml < r - 1 \), and \(r > 5 \). Then \(r \| |S| \) by (i), and \(r > l \), the order of the group of field automorphisms of \(S \). Also \(r > 5 > d \) if \(G = 2A_n(q) \) and \(r > 2m > n + 1 > d \) if \(G = 2A_n(q) \).

Thus, we may assume that \(G = A_n(q) \), so that \(q^{n+1} - 1 \) divides \(|G| \). If \(l(n + 1) > 3 \), let \(r \) be a primitive divisor of \(q^{n+1} - 1 = q_0^{(n+1)} - 1 \). Then \(l(n + 1) < r - 1 \), \(r > 5 \), \(r > l \), and \(r > n + 1 > d \). If \(l(n + 1) < 3 \), then \(d < 3 \) and \(l < 3 \), so we can let \(r \) be any prime greater than 3 which divides \(|S| \).

Lemma 1.3. Let \(S \) be a nonabelian simple group which admits a coprime automorphism of prime order \(p \). Then \(S \) is an adjoint group of Lie type, \(S \) admits a field automorphism of order \(p \), and \(\text{Out}(S) \) has a cyclic and central \(p \)-Sylow subgroup.

Proof. By [10, p. 169] the sporadic and alternating groups have no coprime automorphisms. By [12] the simple group \(2F_4(2)' \) has no coprime automorphism. Thus \(S \) is an adjoint group of Lie type. If \(S \) is a Suzuki or Ree group then \(\text{Aut}(S) \) is generated by the inner and field automorphisms of \(S \) (see [23, 18, 19]). Thus, we may assume that \(S \) is not a Suzuki or Ree group. In particular, \(p > 3 \).

By [20, p. 608], we have \(D < F < \text{Out}(S) \), where \(D \) is the image in \(\text{Out}(S) \) of the group of diagonal automorphisms of \(S \), and \(F \) is the image in \(\text{Out}(S) \) of the group generated by the diagonal and field automorphisms of \(S \). Moreover \(|D| = d \), where \(d \) is as in Lemma 1.2, and \(\text{Out}(S)/F \) is isomorphic to the group of graph automorphisms of \(S \), a \(\{2, 3\} \)-group.

Since \(p > 3 \) and \(p > d \) by Lemma 1.2(ii), it follows that \(S \) admits a field automorphism of order \(p \). Since graph and field automorphisms commute [10, p. 169] and since \(D < F \) and \(p > d \), the rest of Lemma 1.3 follows.
Corollary 1.4. Let S be a nonabelian simple group with Schur multiplier M. Then there is a prime number r such that $r \mid |S|$, $r \nmid |M|$, and $r \nmid |\text{Out}(S)|$.

Proof. This is clear if S is sporadic, alternating, or $2F_4(2)'$, since then both M and $\text{Out}(S)$ are $\{2, 3\}$-groups.

Otherwise, S is an adjoint group of Lie type. By [11, p. 280], any prime divisor of $|M|$ is 2, 3, or a divisor of d. Thus the result follows from Lemma 1.2 and the description of $\text{Out}(S)$ in the proof of Lemma 1.3.

Lemma 1.5. Let G be a finite group. Let $F(G)$ and $F^*(G)$ denote the Fitting and generalized Fitting subgroups of G. If L/W is a chief factor of G such that $L = L'$ and $W = Z(L)$ then $L \leq F^*(G)$. Conversely, if $F^*(G) \neq F(G)$, then $F^*(G)$ contains a perfect subgroup L such that $L/Z(L)$ is a chief factor of G.

Proof. See [3, p. 128].

2. In this section we show that the $GF(p)[G/N]$-module V of Proposition 0 must be primitive. We first record several lemmas which will be needed in the proof of Theorem 2.5, the main result of this section.

Lemma 2.1. Let G be a nonsolvable group which acts faithfully on a finite vector space V. Suppose G acts transitively on $V \setminus \{0\}$. Then the (unique) nonsolvable composition factor of G is not a Suzuki group.

Proof. See the discussion preceding [13, Proposition 5.1].

Lemma 2.2. Let G be a transitive permutation group on a set Ω of n points, and let $P \in \text{Syl}_p(G)$ for some prime p dividing $|G|$. If P has f fixed points on Ω, then $f = \left(\frac{n - 1}{2}\right)$.

Proof. This follows from [14, Corollary 2].

Lemma 2.3. Let G be a primitive permutation group on Ω, with degree n and socle N. Then one of the following occurs:

(i) N is elementary abelian of order p^d and regular; $n = p^d$ where p is prime.

(ii) $N = T_1 \times \cdots \times T_m$, where T_1, \ldots, T_m are isomorphic to a fixed simple group T. Moreover, either

(a) T is the socle of a primitive group G_0 of degree n_0 and $G \leq G_0 \wr S_m$ (with the product action), where $n = n_0^m$, or

(b) $m = kl$ and $n = |T^{k-1}|l$. The permutation group induced by G on $\{T_1, \ldots, T_m\}$ has $\{T_1, \ldots, T_k\}$ as a block of imprimitivity. The group induced on the set of blocks is transitive.

Proof. See Theorem 4.1 and Remark 2 following Theorem 4.1 in [4]. In (ii)(a) the statement that $G_0 \wr S_m$ acts with the product action means that $G_0 \wr S_m$ acts on $\Omega = \Omega_n^m$, where $|\Omega_0| = n_0$. The base group of the wreath product acts componentwise on Ω_n^m, while S_m acts by permuting coordinates. See [4, p. 5] for a formal definition of “product action”.

The following impressive result does not depend on the classification of simple groups.
LEMMA 2.4. Let G be a uniprimitive permutation group of degree n. Then

$$|G| < \exp\left(4\sqrt{n} \log^2 n\right).$$

Proof. This is [2, Corollary 3.3].

Another important ingredient in the proof of Theorem 2.5 will be the lower bounds found by Landazuri and Seitz for the smallest degree of a nontrivial projective representation of a simple group of Lie type. Their results are tabulated in [17, p. 419]. We will not reproduce their table here, except to note a misprint; the bound for $PSO(2n + 1, q')$, $q > 5$, should read $q^{2(n-1)} - 1$, as in [17, Lemma 3.3].

Definition. In this paper J denotes the affine semilinear group over $GF(8)$. Thus J is a solvable group of order 168, which acts 2-transitively on 8 points.

Theorem 2.5. Let G be a transitive permutation group on a finite set Ω. Suppose $|G : O_p(G)| = p$ and $G = O_p^r(G)$ for an odd prime p. Suppose each subset of Ω is stabilized by an element of order p in G. Then $p = 3$, $|\Omega| = 8$, and $G \cong J$.

Proof. Let G be a counterexample to the theorem. The proof will be carried out in a series of steps.

Step 1. G is primitive on Ω.

Proof. We write Ω as a disjoint union of blocks so that G acts as a primitive group on the set of blocks. We may assume that each block contains more than one point.

By induction on $|\Omega|$, the conclusion of the theorem is valid for the action of G on the set of blocks. Thus $p = 3$, we may write $\Omega = B_1 \cup \cdots \cup B_8$, and G acts as J on the set of blocks. Choose $\Delta \leqslant \Omega$ to consist of 2 points from B_1, one point from B_2, and one point from B_3. Any element of order 3 in G which stabilizes Δ must stabilize B_1, B_2, and B_3. This contradicts the fact that elements of order 3 in J have only two fixed points in the action of J on 8 points.

Step 2. Let $|\Omega| = n$. Then:

(i) $2^{n/3} < |\text{Syl}_p(G)|$.

(ii) $2^{4n} < |\text{Syl}_p(G)|$ if $p > 3$.

(iii) If G is not 2-transitive on Ω, then $n \leqslant 10^8$.

Proof. By Lemma 2.2, an element of order p in G fixes less than $n/2$ points of Ω. Thus, an element of order p in G has at most $2n/3$ cycles on Ω if $p = 3$ and at most $.6n$ cycles on Ω if $p > 3$. It follows that the number of ordered pairs $(\langle g \rangle, \Delta)$, such that $\langle g \rangle \in \text{Syl}_p(G)$, $\Delta \leqslant \Omega$, and g fixes Δ, is at most $2^{2n/3} |\text{Syl}_p(G)|$ if $p = 3$ and at most $2^{6n} |\text{Syl}_p(G)|$ if $p > 3$. Since the number of such ordered pairs must exceed the number of subsets of Ω, parts (i) and (ii) follow.

If G is not 2-transitive, then part (i) and Lemma 2.4 imply (iii).

Step 3. G does not have an elementary abelian regular normal subgroup.

Proof. Assume first that G is not solvable. Let $n = q^m$ for a prime number q. Since $|GL(m, q)| \leqslant q^{m^2}$, Step 2 yields $2^{2m/3} < q^{m^2 + m}$, or

$$(\log 2/3) q^m < (m^2 + m) \log q.$$
Since \(G \) is nonsolvable, \(m \geq 2 \), and it is easy to see that \((*) \) holds only if \(q^m \) is \(3^2, 3^3, 3^4, 5^2, 7^2 \) or \(2^m \) for some \(m \leq 7 \). In none of these cases is \(|GL(m, q)| \) divisible by the cube of the order of a simple group or by the order of a simple group which admits a coprime automorphism. Thus \(G = O^p(G) \) can’t have a nonsolvable chief factor.

Hence \(G \) is solvable and [8, Lemma 3.1] implies that \(p = 3, n = 8 \) and \(G \cong J \).

Step 4. \(G \) has a simple socle.

We adopt the notation of Lemma 2.3. Assume \(G \) does not have a simple socle. By Step 3, \(G \) falls under case (ii)(a) of Lemma 2.3 for \(m > 1 \), or under case (ii)(b) of Lemma 2.3.

Suppose first that \(G \) falls under case (ii)(a) with \(m > 1 \). Let \(\Omega_0 \) be the set permuted by \(G_0 \), so that \(\Omega \) may be identified with the cartesian product \(\Omega_0^m \). Let \(\alpha \) and \(\beta \) be distinct points in \(\Omega_0 \). For \(\Delta = \{1, 2, \ldots, m\} \), define \(\omega \in \Omega \) by the condition that \(\omega_i = \alpha \) for \(i \in \Delta \) and \(\omega_i = \beta \) for \(i \notin \Delta \). Define \(\eta \in \Omega \) by the condition that \(\eta_i = \alpha \) for all \(i \leq m \). Choose \(x \in G \) such that \(x \) has order \(p \) and \(x \) stabilizes the subset \(\{\omega, \eta\} \) of \(\Omega \). Then \(x \) must stabilize \(\Delta \) in its action on \(\{1, 2, \ldots, m\} \).

Since \(G \) acts transitively on \(\{T_1, \ldots, T_m\} \), the action of \(G \) on \(\{T_1, \ldots, T_m\} \) satisfies the hypotheses of Theorem 2.5. By induction on \(n \), it follows that \(m = 8 \) and \(p = 3 \). Thus \(T \) is a Suzuki group. The classification of the maximal subgroups of the Suzuki groups [23, Theorem 9] yields that \(n_0 \geq 8^2 + 1 = 65 \). Thus \(n > 10^8 \), contradicting Step 2(iii).

Next suppose (ii)(b) of Lemma 2.3 holds. It is possible that \(T \) admits a coprime automorphism of order \(p \). In this case \(|T| > |Sz(8)| = 29,120 \) and \(|T|^2 > 10^8 \). By Step 2, \(n = |T^{(k-1)l}| < 10^8 \), so \(k = 2, l = 1 \), and \(\text{Soc}(G) = T_1 \times T_2 \). Then \(G \leq \text{Aut}(T_1 \times T_2) \leq \text{Aut} T_1 \times \text{Aut} T_2 \). Since \(O^p(G) = G \), Lemma 1.3 implies that \(|G| = p |T|^2 \) and \(|\text{Syl}_p(G)| = |T|^2 \). Since \(|T| > 29,120 \), this contradicts Step 2(ii).

Thus we assume that \(T \) does not admit a coprime automorphism of order \(p \). If \(l > 1 \), our assumption that \(O^p(G) = G \) implies that an element of order \(p \) in \(G \) permutes the \(l \) blocks \(T_1 \times \cdots \times T_k, \ldots, T_{k(l-1)+1} \times \cdots \times T_{k^2} \) nontrivially. Hence \(l \geq p \). If \(l = 1 \), an element of order \(p \) in \(G \) permutes \(\{T_1, \ldots, T_k\} \) nontrivially, since \(O^p(G) = G \) and \(T \) does not admit a coprime automorphism of order \(p \). Hence \(k \geq p \). In either case \((k-1)l \geq p-1 \).

If \(p \geq 7 \), then \(n = |T^{(k-1)l}| > 60^6 > 10^8 \). If \(p = 5 \), then \(|T| \neq 60 \) and so \(n = |T^{(k-1)l}| > |T|^4 > 10^8 \). If \(p = 3 \), then \(|T| > |Sz(8)| = 29,120 \) and \(n = |T^{(k-1)l}| > |T|^2 > 10^8 \). Hence, \(n > 10^8 \) and we are done by Step 2(iii).

Step 5. Conclusion.

By Lemmas 2.3 and 1.2, \(|G| = p |T| \) and \(T \) admits a field automorphism of order \(p \).

First suppose \(T = Sz(q) \) for an odd power \(q \) of 2. Let \(\alpha \in \Omega \). Then \(n = |G : G_\alpha| = |T : T_\alpha| \). By [23, Theorem 9], \(n = |T : T_\alpha| \geq q^2 + 1 \), so Step 2(i) yields a contradiction. Hence, for the rest of this step we suppose \(T \neq Sz(q) \) and, in particular, \(p > 3 \).

Let \(L(T) \) be the lower bound for the smallest degree of a nontrivial projective representation of \(T \) given in [17, p. 419]. Thus in the notation of [17], \(L(T) \leq l(T, p) \) and \(L(T) \) is the number which actually appears in the table in [17, p. 419]. Let \(T = G(q) \) be an adjoint group of type \(G \) over the field of \(q \) elements. Since \(p > 3 \),
\(q \geq 32 \) and \(q \geq 243 \) if \(T \) has type \(2G_2 \). If \(G \) is of exceptional Lie type then \(L(T) \geq 10^4 \) and \(|T| \leq L(T)^{10} \). Thus \(2^{4L(T)} > |T| \), which contradicts Step 2(ii).

Hence, \(T \) is a classical group. If \(T \) has type \(A_m, B_m, C_m, D_m, 2A_m \) or \(2D_m \) for \(m \geq 2 \), then it is immediate from [17, p. 419] that \(n > L(T) \geq (q^m - 1)/2 > 500 \). As \(q \geq 32 \), this implies that \(\log(2n) \geq m \log q > 3m \).

By the order formulas, \(|T| \approx \#IB_m(q) \approx q^{4m - 2} = \approx (q^m - 1)^2 > 3n^2 \log(3n) \).

By Step 2, \(|T| > 24n\). Thus \(3n^2 \log(3n) > 24n \), contradicting \(n > 500 \).

Thus \(T = \text{PSL}(2, q) \). If \(q \) is odd then \(q \approx 243 \) and \(2^{4L(T)} > |T| \). If \(q \) is even then \(2^{4L(T)} = 2^{4(q-1)} > |T| \) for \(q > 32 \). Thus \(T = \text{SL}_2(32) \). Since \(G \) is primitive on \(\Omega \), \(T \triangleleft G \) is transitive on \(\Omega \). If \(T \) were not doubly transitive on \(\Omega \), then \(n > 2(q - 1) > 60 \). Since \(2^{4(60)} > |T| \), \(T \) must be doubly transitive on \(\Omega \). By [4, Theorem 5.3], \(n = 33 \).

Now let \(x \in G = \text{Aut}(\text{SL}_2(32)) \) have order \(p = 5 \). Since \(5 \mid |T| \) and \(T \) is transitive on \(\Omega \), it follows from [16, Lemma 13.8] that the fixed points of \(x \in \Omega \) form a single orbit under \(C_T(x) \approx S_5 \). Since the number of fixed points of \(x \) is congruent to \(3 \) mod 5, \(x \) has 3 fixed points in \(\Omega \). Then no set of size 4 in \(\Omega \) is stabilized by an element of order 5 in \(G \). This contradiction completes the proof of Theorem 2.5.

Corollary 2.6. Suppose \(|G : O_p'(G)| = p \) and \(G = O_p'(G) \) for an odd prime \(p \). Suppose \(G \) acts faithfully and imprimitively on a finite vector space \(V \) of characteristic \(p \) so that each \(v \in V \) is centralized by a \(p \)-Sylow subgroup of \(G \). Then \(G \) is solvable.

Proof. Let \(V = V_1 \oplus \cdots \oplus V_n \) be an imprimitivity decomposition for the action of \(G \). Let \(G_1 \) be the stabilizer in \(G \) of \(V_1 \) and let \(C = \text{Core}_G(G_1) \). Let \(\Omega = \{1, 2, \ldots, n\} \). Let \(\Delta \leq \Omega \). By choosing a vector whose nonzero components correspond to \(\Delta \), we see that \((G/C) \Omega \) satisfies the hypotheses of Theorem 2.5. As in [8, Lemma 3.2] \(C \) acts transitively on \(V_1 - \{0\} \). By Lemma 2.1, \(C \) is solvable. Thus \(G \) is solvable.

3. Let \(G \) and \(N \) be as in Proposition 0. Suppose that \(F^*(G/N) = F(G/N) \). Theorem 3.1 below shows that \(G \) must be solvable. The groups \(G \) and \(K \) below correspond to \(G/N \) and \(K/N \) in Proposition 0.

Theorem 3.1. Let \(|G : O_p'(G)| = p \) and \(G = O_p'(G) \) for an odd prime \(p \). Suppose that \(V \) is a faithful irreducible primitive \(GF(p)[G] \)-module. Suppose \(p \mid |C_G(x)| \) for all \(x \in V \). If \(F^*(G) = F(G) \), then \(G \) is solvable.

Proof. Let \(K = G' \). The hypotheses imply that \(K \) is the unique maximal normal subgroup of \(G \). The proof is carried out in a series of steps.

Step 1. There is a unique maximal normal abelian subgroup \(Z \) of \(G \). Furthermore, \(Z \) is cyclic and \(Z = Z(K) \).

Proof. As in Step 2 of [8, Theorem 2.3].

Step 2. Let \(E/Z \) be a chief factor of \(G \), let \(B = C_G(E) \) and let \(C = C_G(E/Z) \). Then:

(i) \(E/Z \) is an elementary abelian \(q \)-group for a prime \(q \) and \(E \leq K \).

(ii) \(BE = C \leq K \) and \(B \cap E = Z \).

(iii) \(|E/Z| = q^{2n}\) for an integer \(n \).
(iv) K/C is isomorphic to a subgroup of the symplectic group $\text{Sp}(2n, q)$.

Proof. If $Z = K$, the conclusion of the theorem is satisfied, so we assume $Z < K$.

Since K is the unique maximal normal subgroup of G, $E \leq K$. Since E/Z is a chief factor of G and $Z \leq Z(K)$, E is nilpotent or E/Z is a direct sum of isomorphic nonabelian simple groups. In either case $E \leq F^*(G)$ by Lemma 1.5. The hypotheses and Step 1 yield that E is nilpotent but nonabelian. The rest of the proof follows that of Step 4 in [8, Theorem 2.3].

Step 3. There exist $E_1, \ldots, E_m \leq G$ such that:

(i) E_i/Z is a chief factor of G for each i.

(ii) $[E_i, E_j] = 1$ when $i \neq j$.

(iii) $M/Z = E_1/Z \times \cdots \times E_m/Z$, where M is defined to be $E_1E_2\cdots E_m$.

(iv) $C_G(M) = Z$ and $C_{G/Z}(M/Z) = M/Z$.

Proof. As in Step 6 of [24, Theorem 3.3]. We remark that $M = F(G)$.

Step 4. Let $W \neq 0$ be an irreducible Z-submodule of V and let $e = |M : Z|^{1/2}$.

Then $\dim V = te(\dim W)$ for an integer t.

Proof. As in Step 6 of [8, Theorem 2.3].

Step 5. Let W be as in Step 4 and let q_i be the prime divisor of E_i/Z. Then:

(i) $|Z|/(|W| - 1)$.

(ii) $q_i/(|W| - 1)$ for each i.

Proof. As in Step 14 of [24, Theorem 3.3].

Step 6. $|E/Z| = 4$ if and only if $C = K$. In this situation, $p = 3$.

Proof. As in Step 7 of [24, Theorem 3.3].

Step 7. Assume that $|E/Z| \neq 4$. Let $P \in \text{Syl}_p(G)$. Then:

(i) If s is a prime divisor of $|F(G/C)|$, then $s \mid q^{2n} - 1$.

(ii) If $1 \neq S \in \text{Syl}_s(F(G/C))$ and if $C_S(P) = 1$, then $\dim C_{E/Z}(P) = 2n/p$.

(iii) If G/C is solvable, then $1 \neq C_{G/C}(F(G/C)) \leq F(G/C) \leq K/C$.

(iii) If $F(G/C)$ is cyclic and G/C is solvable, then $F(G/C) = K/C$ and $\dim C_{E/Z}(P) = 2n/p$.

Proof. As in Step 11 of [24, Theorem 3.3].

Step 8. Let $P \in \text{Syl}_p(G)$. Then:

(i) $|\text{Syl}_p(G)| \mid C_P(P) \mid V$.

(ii) $|\text{Syl}_p(G)| \geq |V|^{1/2}$.

Proof. As in Step 7 of [8, Theorem 2.3]. Note that we may replace the \geq sign in (ii) by a $>$ sign, since $|V|^{1/2}$ is not a p'-integer.

Step 9. Let $q = 2, p = 3, n \neq 1$. Then:

(i) $n \geq 6$.

(ii) If $n \leq 7$ and K/C is nonsolvable, then $|K/C| \leq 2^{28}$.

Proof. We first assume that K/C is solvable. Suppose that $n = 5$. Since $p = 3$ and $|\text{Sp}(10,2)| = 3^6 \cdot 5^2 \cdot 7 \cdot 11 \cdot 17 \cdot 31 \cdot 2^{25}$, it follows from Steps 2(iv) and 7(i),(iv) that $|F(G/C)| \mid 11 \cdot 31$ and $3 \mid 10$. Thus, $n \neq 5$ and similarly, $n \neq 2$. If $n = 4$, then $|F(G/C)| \mid 5^2 \cdot 17$ by Steps 2(iv) and 7(i). Since $C_{G/C}(F(G/C)) \leq K/C$, a 3-Sylow subgroup of G must act nontrivially on the 5-Sylow subgroup of $F(G/C)$. Then Step
7(iii) yields a contradiction. Thus \(n \neq 4 \). If \(n = 3 \), then Step 7 yields that \(F(G/C) = K/C \) is cyclic of order 7 and \(G/C \) is a Frobenius group of order 21. It is easy to see that \(G/C \) has exactly two nonisomorphic faithful irreducible representations over \(GF(2) \), both of degree 3. Thus, \(E/Z \) is not an irreducible \(G/C \)-module and not a chief factor of \(G \), a contradiction.

Thus, we may assume that \(K/C \) is nonsolvable and \(2 \leq n \leq 7 \). There exists an integer \(d \), and a chief factor \(R/T \) of \(G/C \) such that \(R/T \) is isomorphic to the direct product of \(d \) copies of a nonabelian simple group. Since \(|K/C| \) divides \(|\text{Sp}(14, 2)| \) and \(3 \mid |K/C| \), it follows that \(|K/C| \) divides \(2^{49} \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 43 \cdot 127 \). Hence, \(d \leq 2 \) and since \(O^3(G/C) = G/C \) we have \(d = 1 \). Hence \(R/T \) is isomorphic to a Suzuki group which admits an automorphism of order 3. By the order formulas for the Suzuki groups and the bound on \(|K/C| \) above, it follows that \(R/T = \text{Sz}(8) \) and \(K/R \) and \(T/C \) are both solvable. Since \(|\text{Out}(\text{Sz}(8))| = 3 \), we may replace \(R \) and \(T \) by \(K \) and \(Cd \), respectively, so that \(K/T = \text{Sz}(8) \) and \(T/C \) is solvable.

Step 10. Let \(q = 2 \), \(p \neq 3 \) and \(n \neq 1 \). Then:

(i) \(n \geq 4 \).

(ii) If \(n = 4 \), then \(K/C \) is solvable.

(iii) If \(n = 5 \) and \(K/C \) is nonsolvable, then \(p = 5 \) and \(K/C \cong \text{Sz}(32) \).

Proof. First suppose that \(n = 3 \). Since \(|K/C| \) divides \(|\text{Sp}(6, 2)| = 2^9 \cdot 3^4 \cdot 5 \cdot 7 \), the order formulas [9, p. 491] and Lemma 1.2 show that \(K/C \) involves no simple group which admits a coprime automorphism. Since \(G = O^p(G) \), it follows that \(K/C \) has no nonabelian simple chief factor. As \(G = O^p(G/C) \) and \(|K/C| \) is not divisible by the fifth power of the order of a nonabelian simple group, every chief factor of \(K/C \) must be solvable, so \(K/C \) is solvable. As \(p \mid |\text{Aut}(E/Z)| \) and \(p \neq 3 \), \(p \) must be 5, 7 or 31. By Step 7(i), 7(ii), \(O_3(G/C) \) is elementary abelian of order \(3^4 \) and \(p = 5 \). Hence, an element of order \(p \) in \(G \) has no fixed points on \(0_3(G/C) \). By Step 7(ii), 5 | 6, a contradiction. Thus \(n \neq 3 \). Similarly \(n \neq 2 \).

If \(n = 4 \), the arguments of the preceding paragraph show that \(K/C \) is solvable. If \(n = 5 \), the arguments of the preceding paragraph show that \(K/C \) is solvable or that a composition series for \(K/C \) has a unique nonsolvable factor, which is isomorphic to \(SL_2(32) \).

Thus, we may assume that \(n = 5 \), \(p = 5 \), and \(K/C \) has a unique nonsolvable composition factor, isomorphic to \(SL_2(32) \). If \(F(G/C) = 1 \), then \(F^*(G/C) = SL_2(32) \). Since \(C_{G/C}(F^*(G/C)) = F^*(G/C) \), by [3, Theorem 13.12], it follows that \(G/C \cong \text{Aut}(SL_2(32)) \) and \(K/C \cong SL_2(32) \).

We may assume that \(F(G/C) \neq 1 \). Under this assumption we will show that \(K/C \) acts faithfully on an extraspecial group of order \(2^{11} \).
Since E/Z is elementary abelian and $Z \leq Z(E)$, each commutator of E has order 2 and $|E'| = 2$. An application of Fitting’s lemma to the coprime action of $F(G/C)$ on $O_{2}(E)/E'$ yields that $E/E' = (E_0/E') \times (Z/E')$ for some $E_0 \triangleleft G$. Since E/Z is chief and E is nonabelian, $E' = Z(E_0) = \Phi(E_0)$. Since $|E'| = 2$, E_0 is extraspecial of order 2^1 and K/C acts faithfully on E_0.

By [15, p. 357], K/C is isomorphic to a subgroup of one of the two orthogonal groups $O^+ (10, 2)$ or $O^- (10, 2)$. By [15, p. 248], neither $|O^+ (10, 2)|$ nor $|O^- (10, 2)|$ is divisible by $|SL_2(32)|$. Thus K/C has no nonsolvable composition factor, completing the proof of this step.

Step II. If q^n is 5, 7, 11, 32 or 33, then K/C is solvable. Also $q^n \neq 3$.

Proof. Suppose that q^n is 5, 7, 11, 32 or 33 and K/C is nonsolvable. Our assumption that $O^p(G) = G$ implies that K/C involves a simple group which admits a coprime automorphism of order $p \neq q$, or that $|K/C|$ is divisible by the pth power of the order of a nonabelian simple group. Since K/C is subgroup of $Sp(2n, q)$, the order formulas [9, p. 491] yield a contradiction.

If $q^n = 3$, then $|Aut(E/Z)| = 48$. Since p divides $|Aut(E/Z)|$, this contradicts the hypothesis that $p \neq 2$ and $p \nmid |K|$.

Step 12. Conclusion.

We may choose an integer $k \geq 0$ such that $|E_i/Z| = 4$ if and only if $i \leq k$. We let $C_0 = K$ and define C_i to be the centralizer in C_{i-1} of E_i/Z, for $1 \leq i \leq m$. By Step 2(iv) applied to E_i/Z, C_{i-1}/C_i is isomorphic to a subgroup of $Sp(2n_i, q_i)$ for each i. By Steps 6 and 3, $C_k = K$ and $C_m = M$. Since $|Sp(2n, q)| < q^{2n^2+n}$, we have $|\text{Syl}_p(G)| \leq |K|$ and

$$(1) \quad \log(|\text{Syl}_p(G)|) \leq \log|Z| + 2k \log 2 + \sum_{i=k+1}^{m} (2n_i^2 + 3n_i) \log q_i.$$

By Steps 4 and 8, we have

$$(2) \quad \log(|\text{Syl}_p(G)|) > 2^{k-1} \left(\prod_{i=k+1}^{m} q_i^{n_i} \right) \log |W|.$$

By Step 5, $q_i \leq |Z| < |W|$ for all i and thus

$$(3) \quad 2k \log 2 + \sum_{i=k+1}^{m} (2n_i^2 + 3n_i) \log q_i > \left(-1 + 2^{k-1} \prod_{i=k+1}^{m} q_i^{n_i} \right) \log |W|$$

and

$$(4) \quad 1 + 2k + \sum_{i=k+1}^{m} (2n_i^2 + 3n_i) > 2^{k-1} \prod_{i=k+1}^{m} q_i^{n_i}.$$

We let $l = \sum_{i=k+1}^{m} n_i$, so that (4) yields $1 + 2k + 2l^2 + 3l > 2^{k+1} - 1$ and hence $k + l \leq 8$. If $l = 0$, then $K = C_m = M$ and G is solvable. We may assume that $l \geq 1$.

Suppose first that $n_{k+1} = 1$. By Step 11, $q_{k+1} \geq 5$. Then (4) yields

$$6 + 2k + 2(l - 1)^2 + 3(l - 1) > 2^{k+1} \cdot 5 \cdot 3^{l-1}.$$

Hence $l \leq 2$. If $l = 2$, then $q_{k+2} \geq 5$ by Step 11, and (4) gives the contradiction $11 + 2k > 2^{k-1} + 5^2$. Thus $l = 1$ and $q_{k+1} = 5, 7$ or 11 by (4). Since $C_K = K$ and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
BRAUER’S HEIGHT CONJECTURE

\[C_{k+1} = M, \] it follows from Step 11 that \(G \) is solvable. We may assume that \(n_i \geq 2 \)
for all \(i > k \).

Suppose \(n_{k+1} = 2 \), so that \(q_{k+1} \geq 3 \) by Step 10. Now (4) becomes
\[15 + 2k + 2(l - 2)^2 + 3(l - 2) > 2^{k-1} \cdot 3^2 \cdot 2^{l-2} \]
and \(l \leq 5 \). But then Step 10 yields that \(q_i \geq 3 \) for \(i > k + 1 \) and (4) implies that
\[15 + 2k + 2(l - 2)^2 + 3(l - 2) > 2^{k-1} \cdot 3^l \]
and \(l \leq 3 \). By the last paragraph \(l = 2 \). Then \(q_{k+1} \) is 3 or 5 by inequality (4). If \(q_{k+1} = 5 \), then (3) and (4) yield that \(k = 0 \) and \(5^{14} > |W|^{23/2} \), whence \(|W| < 11 \), contradicting Step 5. Thus \(q_{k+1} = 3 \). Since \(C_k = K \) and \(C_{k+1} = M \), Step 11 implies that \(K/C \) and \(G \) are solvable. We may assume that \(n_i \geq 3 \) for all \(i > k \).

Suppose that \(n_{k+1} = 3 \), so that \(q_{k+1} \geq 3 \) by Step 10. Inequality (4) yields that
\[28 + 2k + 2(l - 3)^2 + 3(l - 3) > 2^{k-1} \cdot 3^3 \cdot 2^{l-3} \]
and that \(l < 6 \). By the last paragraph \(l = 3 \). Then \(28 + 2k > 2^{k-1}q_{k+1}^2 \) by (4). Hence
\(q_{k+1} = 3 \) and \(k \leq 1 \). Since \(C_k = K \) and \(C_{k+1} = M \), Step 11 implies that \(K/C \) and \(G \) are solvable. Hence \(n_i \geq 4 \) for all \(i > k \).

Suppose \(n_{k+1} = 4 \). Then
\[45 + 2k + 2(l - 4)^2 + 3(l - 4) > 2^{k-1}q_{k+1}^4 \cdot 2^{l-4} \]
by (4) and \(l < 8 \). By the last paragraph \(l = 4 \). Then \(q = 2 \) or \(3 \) and \(k = 0 \) if \(q = 3 \). If \(q = 3 \), then inequality (3) becomes \(3^{44} > |W|^{79/2} \), contradicting Step 5. Hence \(q = 2 \), and \(K/M \) and \(G \) are solvable. Hence \(n_i \geq 5 \) for all \(i > k \).

Now \(m = k + 1 \), since \(k < k + l \leq 8 \). If \(n_{k+1} = 8 \), then \(k = 0 \) and \(q_1 = 2 \) by (4). Inequality (3) becomes \(2^{152} > |W|^{127} \), contradicting Step 5. Thus \(5 \leq n_{k+1} \leq 7 \).

Suppose \(n_{k+1} = 6 \). By (4), \(k \leq 1 \). If \(k = 1 \), then \(q_{k+1} = 2 \) and (3) implies that \(2^{92} > |W|^3 \), a contradiction. Thus \(k = 0 \) and (3) becomes \(2^{90} > |W|^3 \). Since \(|W| \) is a power of \(p \), it follows that \(|W| = p \) and \(p = 3 \), \(5 \) or \(7 \). Since \(|Z| = |W| = p \), we have \(P \leq C_G(Z) \). By Step 2, \(|K/M| \) divides \(|\text{Sp}(12, 2)| \) and thus \(|K/Z| \) \(2^{48} \cdot 3^8 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 31 \). If \(p = 5 \) or \(7 \), then \(P \) must fix and centralize an \(r \)-Sylow subgroup of \(K/Z \), whenever \(r = 5, 7, 13 \) or \(17 \). Thus
\[|\text{Syl}_p(G)| = |K/Z : C_{K/Z}(P)| \leq 2^{48} \cdot 3^8 \cdot 11 \cdot 31 \leq 2^{70} \]
Inequality (2) now has \(2^{70} > |W|^{32} \) and so \(|W| < 5 \), a contradiction. Thus \(p = 3 = |W| \). By Step 9, \(|\text{Syl}_3(G)| \leq |K/Z| \leq 2^{40} \) and inequality (2) yields \(2^{40} > 3^{32} \), a contradiction. Hence \(n_{k+1} \neq 6 \). Similarly \(n_{k+1} \neq 7 \).

Thus \(n_{k+1} = 5 \) and \(q_{k+1} = 2 \). By Steps 9 and 10, we may assume that \(p = 5 \) and \(K/M \cong SL_2(32) \). Since \(|K/M| < 2^{15} \), a modification of the argument used to derive inequality (3) shows that
\[2k(\log 2 + 25 \log 2 > (-1 + 16 \cdot 2^k) \log |W|) \]
This contradicts the fact that \(|W| \geq p = 5 \) and completes the proof of the theorem.
4. In this section consider the case that V is a primitive $GF(p)[G/N]$-module
and $P(G/N) \neq F(G/N)$. The group G in the statements of Propositions 4.1 and
4.2 corresponds to $G/O_p(N)$ in the setting of Proposition 0.

Proposition 4.1. Let $G = O^p(G)$ and $|G : O_p(G)| = p$ for an odd prime p. Suppose
that L/W is a nonabelian simple chief factor of G. Suppose that $\mu \in \text{Irr}(W)$ is
invariant in G. Then some character in $\text{Irr}(G/\mu)$ has degree divisible by p.

Proof. By applying a character triple isomorphism [16, Theorem 11.28] we may
suppose that μ is linear and faithful, so that $W \leq Z(G)$. We must produce
$\chi \in \text{Irr}(L/\mu)$ such that $p | I_G(\chi)$. We will do this in a series of steps.

Step 1. We may assume that $L = L'$.

Proof. Since $(L/W)' = L/W$, we have $L = L'W$ and $L'/L' \cap W = L/W$. Sup-
pose there were a character $\chi' \in \text{Irr}(L | p_{L \cap W})$ such that $p | I_G(\chi')$. Then $L =$ $L'W \leq I_G(\chi')$, and since $L/L' \cong W/L' \cap W$ is cyclic, there exists $\chi_1 \in \text{Irr}(L)$
which extends χ'. Since $\chi_1 | W$ extends $\chi'(1)\mu | L \cap W$, we may choose a linear character ν of $L/L' \cong W/L' \cap W$ so that $\chi_1 \nu \in \text{Irr}(L | \mu)$. Set $\chi = \chi_1 \nu$. Then χ extends χ',$\chi \in \text{Irr}(L | \mu)$, and $I_G(\chi) \leq I_G(\chi')$. Thus $p | I_G(\chi)$.

Step 2. L/W is an adjoint group of Lie type.

Proof. This follows from $G = O^p(G)$ and Lemma 1.3.

Step 3. There is an automorphism σ of L/W and a prime number r such that
$p | r | W$, $r | L | \sigma$, and $r | I_{L/W}(\sigma)$.

Proof. By Step 2, L/W is an adjoint group over $GF(q^p)$ where q is a prime
power; of course, q is not a power of p. Let $G(q^p)$ be the simply connected group of
the same type, so that $G(q^p)$ is a central extension of L/W. Then there is a simply
connected and simple (in the sense of algebraic groups) algebraic group G and an
endomorphism σ of G such that G_{σ}, the fixed point group, is $G(q)$ (see [22, pp.
82–83]). Let $\tau = \sigma^p$. Then G_{τ} is finite [21, 10.6] and $G_{\tau} = G(q^p)$ by [21, 11.16,
11.13]. Moreover, G_{τ} admits σ and the restriction of σ to G_{τ} has order p. Let
d$_{\tau} = d(q^p) = |Z(G_{\tau})|$. By Lemma 1.2, $d_{\tau} = |G_{\tau}/Z(G_{\tau})|$, so $p | |G_{\tau}|$. Consequently, $C_{G_{\tau}/Z(G_{\tau})}(\sigma) \cong G_{\sigma}/G_{\sigma} \cap Z(G_{\tau})$ and σ induces an automorphism of order p on $G_{\sigma}/Z(G_{\tau}) \cong L/W$.

By the order formulas [2, 11.16], $|G(q^p)|$ has the form $(q^p)^N \prod_{j \geq 1} (q^{m_j} - \epsilon_j)$
where each ϵ_j is a root of 1 of order 1, 2 or 3. Choose notation so that $m_1 \geq m_2 \geq \cdots$.
If G is untwisted let r be a primitive divisor of $q^{m_1} - 1$. If G is of type $2B_2$, $2D_n$,
$3D_4$, $2G_2$, $2F_4$, $2E_6$, let r be a primitive divisor of $q^{4p} - 1$, $q^{2np} - 1$, $q^{12p} - 1$
$q^{2p} - 1$, $q^{12p} - 1$, $q^{15p} - 1$, respectively. If G is of type $2A_n$, let r be a primitive
divisor of $q^{2p(n+1)} - 1$ if n is even and $q^{2np} - 1$ if n is odd. Since $p \geq 3$, the
exceptional cases $2^6 - 1$ and $p^2 - 1$ in Lemma 1.1 do not arise. Also $r > 3$.

By the order formulas, $r | |G(q^p)|$ and $r | d(q^p)$. Hence $r | |L/W|$. Let M be the
Schur multiplier of $G(q^p)$. By [11, p. 280], any prime greater than 3 which divides
$|M|$ must divide $d(q^p)$. Since $r | d(q^p)$ and $L = L'$ it follows that $r | |W|$
.

Finally, we show that $r | |C_{L/W}(\sigma)|$. Note that $|C_{L/W}(\sigma)||G(q)|$ and $|G(q)|$ has
the form $(q^p)^N \prod_{j \geq 1} (q^{m_j} - \epsilon_j)$. If G is untwisted, the definition of r makes it clear that
$r | |G(q)||$. If G has type $2D_4$, then any prime divisor of $|G(q)|$ divides $q^{12} - 1$, so
Step 4. Let r be as in Step 3 and let $\alpha \in \text{Aut}(L/W)$ we have order p. Then $r \mid |C_{L/W}(\alpha)|$.

Proof. Let σ be as in Step 3. By Lemma 1.3 and Sylow’s theorem, $\langle \sigma \rangle$ and $\langle \alpha \rangle$ are conjugate in $\text{Aut}(L/W)$. Thus $r \mid |C_{L/W}(\alpha)|$.

Step 5. Any two elements of order p in G fix the same irreducible characters of L.

Proof. Let $g, h \in G$ have order p. We may assume that $gh \in \text{OP}(G)$. By Lemma 1.3, gh induces an inner automorphism of L/W. Hence we may choose $x \in L$ so that $gh^{-1}x$ centralizes L/W. Since $W \leq Z(G)$, $gh^{-1}x$ also centralizes W. Therefore $\langle gh^{-1}x, L, L \rangle = [L, gh^{-1}x, L] = 1$. The three subgroup lemma yields $1 = [L, L, gh^{-1}x] = [L, gh^{-1}x]$, so $gh^{-1}x$ centralizes L. Hence gh^{-1} induces an inner automorphism of L, and the result follows.

Step 6. Let $g \in G$ be a fixed element of order p. Let $x \in L$ be a fixed element of order r. Suppose that $\langle x^g \rangle$ and $\langle x \rangle$ are conjugate in L. Then the conclusion of Proposition 4.1 holds.

Proof. Since $p \mid |L|$, g must normalize an L-conjugate $\langle y \rangle$ of $\langle x \rangle$. By Step 4, g does not centralize $\langle y \rangle$. By Step 3, $\langle y, W \rangle = \langle y \rangle \times W$. Let ν be a faithful linear character of $\langle y \rangle$. Let $\theta = (\mu \times \nu)^\mu$, let $c = |C_L(y)|/|\langle y \rangle \times W|$, and let $e = \nu(y)$. By the definition of induced characters, $\theta(y) = c\sum_{y \in S} e^y$, where S is a p'-subgroup of $\text{Gal}(\mathbb{Q}(e)/\mathbb{Q})$. Also

$$
\theta^g(y) = \sum_{y \in S} e^{\beta y},
$$

where $\beta \in \text{Gal}(\mathbb{Q}(e)/\mathbb{Q})$ has order p. Since the primitive rth roots of 1 are linearly independent over \mathbb{Q}, it follows that $\theta^g(y) \neq \theta(y)$, so $\theta^g \neq \theta$.

Let χ be an irreducible constituent of θ such that $\chi^g \neq \chi$. Then $\chi \in \text{Irr}(L|\mu)$. By Step 5, χ is fixed by no element of order p in G, so $p \mid |I_G(\chi)|$.

Step 7. Let g and x be as in Step 6. Suppose that $\langle x^g \rangle$ and $\langle x \rangle$ are not conjugate in L. Then the conclusion of Proposition 4.1 holds.

Proof. As in Step 6, $\langle x, W \rangle = \langle x \rangle \times W$. Let $\theta = (1_{\langle x \rangle} \times \mu)^L$. Then $\theta(x) = |\text{N}_L(\langle x \rangle) : \langle x, W \rangle| \neq 0$, while $\theta(x^g) = 0$. Hence $\theta \neq \theta^g$. The conclusion of Proposition 4.1 follows as in Step 6.

Proposition 4.2. Let $G = \text{OP}(G)$ and $\mu \in \text{Irr}(W)$ be a character of order p for an odd prime p. Suppose that L/W is a nonabelian nonsimple chief factor of G. Suppose that $\mu \in \text{Irr}(W)$ is invariant in G. Then some character in $\text{Irr}(G|\mu)$ has degree divisible by p.

Proof. As in the proof of Proposition 4.1, we may assume that μ is linear and faithful and that $L = L'$. We have $L/W = \prod_{i=1}^n S_i/W$, where the S_i/W are isomorphic simple groups. The S_i are transitively permuted by the action of G.

Step 1. L is the central product of the S_i.

Proof. For $i \neq j$, $x \in S_i$, $y \in S_j$, the map $y \rightarrow [x, y]$ defines a homomorphism from S_i to W whose kernel contains W. Since S_i/W is simple, this homomorphism must be trivial. Thus $[S_i, S_j] = 1$. Since $\cap S_i = W$, the result follows.

Step 2. Each S_i is perfect.
PROOF Since \(L \) is perfect, \(L \) is the product of the \(S_i' \). Since \(G \) permutes the \(S_i' \) transitively, \(S_i' \cap W \) is the same group \(W_0 \) for all \(i \). Then \(L/W_0 \) is the direct product of the \(S_i'/W_0 \). Thus \(|L|=|W_0|\prod|S_i'/W_i'| \), so \(W_0=W \) and so \(S_i'=S_i \) for all \(i \).

To make the remaining steps of the proof clearer we introduce an “abstract” group \(S \), isomorphic to each \(S_i' \). Thus \(S \) is perfect and \(Z(S) \cong W \).

Step 3. Let \(\mu_0 \) be a faithful linear character of \(Z(S) \). Let \(A \) be the centralizer in \(\text{Aut}(S) \) of \(Z(S) \). Then \(A \) has more than one orbit on \(\text{Irr}(S \mid \mu_0) \).

PROOF. Suppose not. Then every character in \(\text{Irr}(S \mid \mu_0) \) has the same degree \(d \). Let \(m=|\text{Irr}(S \mid \mu_0)| \). By [16, p. 84], \(|S : Z(S)| = md^2 \).

By the argument in Step 5 of Proposition 4.1, any element of \(A \) which induces an inner automorphism of \(S/Z(S) \) lies in \(\text{Inn}(S) \), so that \(A/\text{Inn}(S) \) is isomorphic to a subgroup of \(\text{Out}(S/Z(S)) \). Therefore, \(m \) divides \(|\text{Out}(S/Z(S))| \).

Let \(r \) be as in Corollary 1.4, applied to \(S/Z(S) \). Since \(r \mid |S/Z(S)| \) and \(r \mid |\text{Out}(S/Z(S))| \), it follows that \(r \mid m \) and \(r \mid d \). Let \(R \in \text{Syl}_r(S) \). Since \(r \mid |Z(S)| \), \(R \times Z(S) \) is a subgroup of \(S \). Let \(\theta = (1_R \times \mu_0)^S \). Then \(r \mid \theta(1) \), which contradicts the fact that every irreducible constituent of \(\theta \) lies in \(\text{Irr}(S \mid \mu_0) \).

Step 4. Let \(U \) be the permutation group on \(\{S_1, \ldots, S_n\} \) induced by the action of \(G \). Then the conclusion of Proposition 4.2 holds if \(p > 3 \) or if \(U \cong J \).

PROOF. Since \(\text{Op}'(G) = G \) we have \(p \mid |U| \). By Theorem 2.5 we can choose \(\Delta \leq \{S_1, \ldots, S_n\} \) so that no element of order \(p \) in \(G \) fixes \(\Delta \). Fix isomorphisms \(f_i: S \to S_i \) so that the restrictions \(f_i: Z(S) \to W \) are the same function for all \(i \). Then \(\mu_0 = f_i^{-1}(\mu) \) is a well-defined linear character of \(Z(S) \). By Step 3, we may choose \(\chi, \psi \in \text{Irr}(S \mid \mu_0) \) to lie in different \(A \)-orbits. Define \(\eta \in \text{Irr}(L \mid \mu) \) by requiring that \(\eta\big|_{S_i} = (\eta(1)/\chi(1))f_i(\chi) \) for \(S_i \in \Delta \) and \(\eta\big|_{S_i} = (\eta(1)/\psi(1))f_i(\psi) \) for \(S_i \not\in \Delta \).

Suppose \(g \in G \) fixes \(\eta \). Then there exist indices \(i, j \) such that \(S_i \in \Delta, S_j \not\in \Delta \) and \(S_g = S_j \). Let \(c(g): S_i \to S_j \) be the isomorphism given by conjugating by \(g \). Then \(f_i c(g) f_j^{-1}: S \to S, f_i c(g) f_j^{-1} \in A \), and \(f_i c(g) f_j^{-1} \) takes \(\chi \) to \(\psi \), a contradiction.

Step 5. Conclusion.

Let \(S, A \) and \(U \) be as above. We may assume by Step 4 that \(U \cong J, p = 3, n = 8 \) and \(S/Z(S) \cong S_8(q) \) for some odd power \(q \) of 2. If \(q > 8 \) then \(S_8(q) \) has a trivial Schur multiplier, so \(L \) is the direct product of 8 copies of \(S_8(q) \) and \(\mu = 1 \). We can write \(\{S_1, \ldots, S_8\} \) as the disjoint union of 3 sets \(\Delta_1, \Delta_2, \Delta_3 \) so that no element of order 3 in \(G \) stabilizes all 3 sets. Now choose irreducible characters \(\chi_1, \chi_2, \chi_3 \) of \(S \cong S_8(q) \) whose degrees are all different. Define \(\chi \in \text{Irr}(L \mid \mu) \) to be the direct product whose \(j \)th component is \(\chi_j \) if \(S_j \in \Delta_j \). Then \(\chi \) is not fixed by an element of order 3 in \(G \).

Thus we may assume that \(S/Z(S) \cong S_8(8) \). By the argument in the preceding paragraph, we may assume that \(Z(S) \neq 1 \). Since \(S \) is perfect, \(Z(S) \) is cyclic, and the multiplier of \(S_8(8) \) is \(\mathbf{Z}_2 \times \mathbf{Z}_2 \) by [1, Theorem 2], we have \(|Z(S)| = 2 \). Since \(|\text{Out}(S_8(8))| = 3 \) and \(\text{Aut}(S_8(8)) \) has a trivial multiplier [1, Theorem 2], it follows that every automorphism of \(S \) is inner. Let \(\Delta_1, \Delta_2, \Delta_3 \) be as in the preceding paragraph. Since \(|S/Z(S)| = 29,120 \) is not the sum of two squares, we can choose distinct characters \(\chi_1, \chi_2, \chi_3 \in \text{Irr}(S \mid \mu) \). Fix isomorphisms \(f_i: S \to S_i \) for \(1 \leq i \leq 8 \) and define \(\chi \in \text{Irr}(L \mid \mu) \) by the condition that \(\chi\big|_{S_i} = (\chi(1)/\chi_i(1))f_i(\chi_i) \) for \(S_i \in \Delta_i \).
BRAUER’S HEIGHT CONJECTURE

Since \(A = \text{Inn}(S) \), it follows that \(\chi \) is fixed by no element of order 3 in \(G \). This completes the proof of Proposition 4.2.

PROOF OF THEOREM A. Let \(G \) be a minimal counterexample to Theorem A. Then \(G \) is nonsolvable by [8, Theorem A] and satisfies conditions (1)–(6) of Proposition 0. Let \(V \) be as in Proposition 0.

We may apply Corollary 2.6 and Theorem 3.1 to the action of \(G/N \) on \(V \) to deduce that \(V \) is a primitive \(GF(p)[G/N] \)-module and \(F^*(G/N) \neq F(G/N) \). By Lemma 1.5, there is a perfect subgroup \(\bar{L} \) of \(G/N \) such that \(\bar{L}/Z(\bar{L}) \) is a nonsolvable chief factor of \(G/N \). Any prime divisor of \(|Z(\bar{L})| \) divides \(|M(S)| \), the order of the Schur multiplier of a nonabelian simple composition factor of \(\bar{L} \). By Lemma 1.2 and the table in [11, p. 280], we conclude that \(p \) exceeds every prime divisor of \(|Z(\bar{L})| \). Since \(V \) is a primitive \(GF(p)[G/N] \)-module, \(Z(\bar{L}) \) is cyclic, and thus every element of order \(p \) in \(G \) centralizes \(Z(\bar{L}) \).

Let \(L \) and \(W \) be the inverse images in \(G/O_p(N) \) of \(\bar{L} \) and \(Z(\bar{L}) \). We identify the central cyclic subgroup \(Z \) of \(G \) with its image in \(G/O_p(N) \). Thus \(W \) is a normal abelian subgroup of \(G/O_p(N) \), and \(W/Z \cong Z(\bar{L}) \).

Any element of order \(p \) in \(G/O_p(N) \) centralizes both \(Z \) and \(W/Z \cong Z(\bar{L}) \). As \(p \mid |W| \) and \(G = O^p(G) \), it follows that \(W \preceq Z(G/O_p(N)) \). Thus, any linear character \(\mu \) of \(W \) which extends \(\lambda \) is invariant in \(G/O_p(N) \). We may apply Proposition 4.1 or 4.2 to \(G/O_p(N) \), \(L \), \(W \) and \(\mu \) to obtain \(\chi \in \text{Irr}(G/O_p(N) | \mu) \) such that \(p \mid \chi(1) \). Since \(\chi \) may be viewed as a character in \(\text{Irr}(G | \lambda) \), this contradicts (6) in Proposition 0 and completes the proof of Theorem A.

REFERENCES

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Department of Mathematics, Ohio University, Athens, Ohio 45701 (Current address of T. R. Wolf)

Current address (David Gluck): Department of Mathematics, Wayne State University, Detroit, Michigan 48202