The ill-posed Hele-Shaw model and the Stefan problem for supercooled water

Authors:
Emmanuele DiBenedetto and Avner Friedman

Journal:
Trans. Amer. Math. Soc. **282** (1984), 183-204

MSC:
Primary 35R35; Secondary 35K05, 80A20

MathSciNet review:
728709

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Hele-Shaw flow of a slow viscous fluid between slightly separated plates is analyzed in the ill-posed case when the fluid recedes due to absorption through a core . Necessary and sufficient conditions are given on the initial domain occupied by the fluid to ensure the existence of a solution. Regularity of the free boundary is established in certain rather general cases.

Similar results are obtained for the analogous parabolic version, which models the one-phase Stefan problem for supercooled water.

**[1]**Luis A. Caffarelli,*The regularity of free boundaries in higher dimensions*, Acta Math.**139**(1977), no. 3-4, 155–184. MR**0454350****[2]**Luis A. Caffarelli,*Compactness methods in free boundary problems*, Comm. Partial Differential Equations**5**(1980), no. 4, 427–448. MR**567780**, 10.1080/0360530800882144**[3]**Luis A. Caffarelli,*A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets*, Boll. Un. Mat. Ital. A (5)**18**(1981), no. 1, 109–113 (English, with Italian summary). MR**607212****[4]**L. A. Caffarelli and N. M. Rivière,*Smoothness and analyticity of free boundaries in variational inequalities*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**3**(1976), no. 2, 289–310. MR**0412940****[5]**John R. Cannon, Daniel B. Henry, and Daniel B. Kotlow,*Continuous differentiability of the free boundary for weak solutions of the Stefan problem*, Bull. Amer. Math. Soc.**80**(1974), 45–48. MR**0333443**, 10.1090/S0002-9904-1974-13347-1**[6]**Pavel Čížek and Vladimír Janovský,*Hele-Shaw flow model of the injection by a point source*, Proc. Roy. Soc. Edinburgh Sect. A**91**(1981/82), no. 1-2, 147–159. MR**648924**, 10.1017/S0308210500012701**[7]**A. B. Crowley,*On the weak solution of moving boundary problems*, J. Inst. Math. Appl.**24**(1979), no. 1, 43–57. MR**539372****[8]**C. M. Elliott,*On a variational inequality formulation of an electrochemical machining moving boundary problem and its approximation by the finite element method*, J. Inst. Math. Appl.**25**(1980), no. 2, 121–131. MR**571974****[9]**C. M. Elliott and V. Janovský,*A variational inequality approach to Hele-Shaw flow with a moving boundary*, Proc. Roy. Soc. Edinburgh Sect. A**88**(1981), no. 1-2, 93–107. MR**611303**, 10.1017/S0308210500017315**[10]**C. M. Elliott and J. R. Ockendon,*Weak and variational methods for moving boundary problems*, Research Notes in Mathematics, vol. 59, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**650455****[11]**A. Fasano and M. Primicerio,*New results on some classical parabolic free-boundary problems*, Quart. Appl. Math.**38**(1980/81), no. 4, 439–460. MR**614552****[12]**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****[13]**Avner Friedman,*Regularity theorems for variational inequalities in unbounded domains and applications to stopping time problems*, Arch. Rational Mech. Anal.**52**(1973), 134–160. MR**0353110****[14]**Avner Friedman,*Analyticity of the free boundary for the Stefan problem*, Arch. Rational Mech. Anal.**61**(1976), no. 2, 97–125. MR**0407452****[15]**Avner Friedman,*Variational principles and free-boundary problems*, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. A Wiley-Interscience Publication. MR**679313****[16]**Avner Friedman and Robert Jensen,*Convexity of the free boundary in the Stefan problem and in the dam problem*, Arch. Rational Mech. Anal.**67**(1978), no. 1, 1–24. MR**473315**, 10.1007/BF00280824**[17]**Avner Friedman and David Kinderlehrer,*A one phase Stefan problem*, Indiana Univ. Math. J.**24**(1974/75), no. 11, 1005–1035. MR**0385326****[18]**Robert Jensen,*Smoothness of the free boundary in the Stephan problem with supercooled water*, Illinois J. Math.**22**(1978), no. 4, 623–629. MR**503966****[19]**J. A. McGeough and H. Rasmussen,*On the derivation of the quasi-steady model in electrochemical machining*, J. Inst. Math. Appl.**13**(1974), 13-21.**[20]**J. W. McLean and P. G. Saffman,*The effect of surface tension on the shape of fingers in a Hele-Shaw cell*, J. Fluid Mech.**102**(1981), 455-469.**[21]**Pierre van Moerbeke,*An optimal stopping problem with linear reward*, Acta Math.**132**(1974), 111–151. MR**0376225****[22]**S. Richardson,*Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel*, J. Fluid Mech.**56**(1972), 609-618.**[23]**S. Richardson,*Some Hele-Shaw flows with time-dependent free boundaries*, J. Fluid Mech.**102**(1981), 263–278. MR**612095**, 10.1017/S0022112081002632**[24]**P. G. Saffman and Geoffrey Taylor,*The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid*, Proc. Roy. Soc. London. Ser. A**245**(1958), 312–329. (2 plates). MR**0097227****[25]**David G. Schaeffer,*A new proof of the infinite differentiability of the free boundary in the Stefan problem*, J. Differential Equations**20**(1976), no. 1, 266–269. MR**0390499**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35R35,
35K05,
80A20

Retrieve articles in all journals with MSC: 35R35, 35K05, 80A20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1984-0728709-6

Article copyright:
© Copyright 1984
American Mathematical Society