Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


The number of factorizations of numbers less than $ x$ into divisors greater than $ y$

Author: Douglas Hensley
Journal: Trans. Amer. Math. Soc. 282 (1984), 259-274
MSC: Primary 11N25
MathSciNet review: 728712
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A(x,\,y)$ be the number in the title. There is a function $ h:[0,\,\infty ) \to [0,\,2]$, decreasing and convex, with $ h(0) = 2$ and $ \operatorname{lim}_{r \to \infty }h(r) = 0$, such that if $ r = \operatorname{log} y/\sqrt {\operatorname{log} \,x} $ then as $ x \to \infty $ with $ r$ fixed,

$\displaystyle A(x,y) = \frac{{C(r)x\,\operatorname{exp} \left( {h(r)\sqrt {\ope... ...{log} \,x)}^{3/4}}}}\left( {1 + O{{(\operatorname{log} \,x)}^{ - 1/4}}} \right)$

. The estimate is uniform on intervals $ 0 < r \leq {R_0}$. As corollaries we have for $ \operatorname{log} \,y = \theta {(\operatorname{log} \,x)^{1/4}}$,

$\displaystyle \lim \limits_{x \to \infty } \,\frac{{A(x,\,y)}} {{A(x,\,1)/y}} = {e^{{\theta ^2}/2}}$

,and if $ \operatorname{log} \,y = o {(\operatorname{log} \,x)^{1/4}}$ then $ A(x,\,y) \approx A(x,\,1)/y$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11N25

Retrieve articles in all journals with MSC: 11N25

Additional Information

PII: S 0002-9947(1984)0728712-6
Keywords: Complex analytic methods, elementary probability methods, large deviations
Article copyright: © Copyright 1984 American Mathematical Society