Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Codimension $ 1$ orbits and semi-invariants for the representations of an oriented graph of type $ \mathcal{A}_n$


Author: S. Abeasis
Journal: Trans. Amer. Math. Soc. 282 (1984), 463-485
MSC: Primary 14L30; Secondary 14D25, 16A64
MathSciNet review: 732101
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Dynkin diagram $ \mathcal{A}_n$ with an arbitrary orientation $ \Omega $. For a given dimension $ d = ({d_1}, \ldots ,{d_n})$ we consider the corresponding variety $ {L_d}$ of all the representations of $ (\mathcal{A}_n,\Omega )$ on which a group $ {G_d}$ acts naturally. In this paper we determine the maximal orbit and the codim. $ 1$ orbits of this action, giving explicitly their decomposition in terms of the irreducible representations of $ \mathcal{A}_n$. We also deduce a set of algebraically independent semi-invariant polynomials which generate the ring of semi-invariants.


References [Enhancements On Off] (What's this?)

  • [1] S. Abeasis, On the ring of semi-invariants of the representations of an equioriented quiver of type \cal𝐴_{𝑛}, Boll. Un. Mat. Ital. A (6) 1 (1982), no. 2, 233–240 (English, with Italian summary). MR 663286
  • [2] S. Abeasis and A. Del Fra, Degenerations for the representations of a quiver of type 𝒜_{𝓂}, J. Algebra 93 (1985), no. 2, 376–412. MR 786760, 10.1016/0021-8693(85)90166-8
  • [3] I. N. Bernšteĭn, I. M. Gel′fand, and V. A. Ponomarev, Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19–33 (Russian). MR 0393065
  • [4] Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 0447344
  • [5] P. Gabriel, Représentations indécomposables, Sèm. Bourbaki, no. 444, 1973/1974, pp. 1-27.
  • [6] Dieter Happel, Relative invariants and subgeneric orbits of quivers of finite and tame type, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 903, Springer, Berlin-New York, 1981, pp. 116–124. MR 654706
  • [7 V] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), no. 1, 57–92. MR 557581, 10.1007/BF01403155
  • [8] -, Infinite root systems, representations of graphs and invariant theory. II (to appear).
  • [9] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 0430336

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14L30, 14D25, 16A64

Retrieve articles in all journals with MSC: 14L30, 14D25, 16A64


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0732101-8
Keywords: Dynkin diagrams, representations, orbits and semi-invariants
Article copyright: © Copyright 1984 American Mathematical Society