Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Codimension $ 1$ orbits and semi-invariants for the representations of an oriented graph of type $ \mathcal{A}_n$


Author: S. Abeasis
Journal: Trans. Amer. Math. Soc. 282 (1984), 463-485
MSC: Primary 14L30; Secondary 14D25, 16A64
DOI: https://doi.org/10.1090/S0002-9947-1984-0732101-8
MathSciNet review: 732101
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Dynkin diagram $ \mathcal{A}_n$ with an arbitrary orientation $ \Omega $. For a given dimension $ d = ({d_1}, \ldots ,{d_n})$ we consider the corresponding variety $ {L_d}$ of all the representations of $ (\mathcal{A}_n,\Omega )$ on which a group $ {G_d}$ acts naturally. In this paper we determine the maximal orbit and the codim. $ 1$ orbits of this action, giving explicitly their decomposition in terms of the irreducible representations of $ \mathcal{A}_n$. We also deduce a set of algebraically independent semi-invariant polynomials which generate the ring of semi-invariants.


References [Enhancements On Off] (What's this?)

  • [1] S. Abeasis, On the ring of semi-invariants for the representations of an equioriented quiver of type $ \mathcal{A}_n$, Bull. Un. Mat. Ital. (to appear). MR 663286 (84d:16036)
  • [2] S. Abeasis and A. Del Fra, Degenerations for the representations of a quiver of type $ \mathcal{A}_n$, J. Algebra (to appear). MR 786760 (86j:16028)
  • [3] I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Russian Math. Surveys 28 (1973), 17-32. MR 0393065 (52:13876)
  • [4] V. Dlab and G. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. No. 173 (1976), 1-57. MR 0447344 (56:5657)
  • [5] P. Gabriel, Représentations indécomposables, Sèm. Bourbaki, no. 444, 1973/1974, pp. 1-27.
  • [6] D. Happel, Relative invariants and subgeneric orbits of quivers of finite and tame type (to appear). MR 654706 (83e:16032)
  • [7 V] Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92. MR 557581 (82j:16050)
  • [8] -, Infinite root systems, representations of graphs and invariant theory. II (to appear).
  • [9] M. Sato and T. Kimura, A classification of irreducible pre-homogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-55. MR 0430336 (55:3341)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14L30, 14D25, 16A64

Retrieve articles in all journals with MSC: 14L30, 14D25, 16A64


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0732101-8
Keywords: Dynkin diagrams, representations, orbits and semi-invariants
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society