Asymptotic behavior of solutions of second order differential equations with integrable coefficients

Author:
Manabu Naito

Journal:
Trans. Amer. Math. Soc. **282** (1984), 577-588

MSC:
Primary 34D05

MathSciNet review:
732107

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The differential equation , , is considered under the condition that exists and is finite, and necessary and/or sufficient conditions are given for this equation to have solutions which behave asymptotically like nontrivial linear functions .

**[1]**Nam P. Bhatia,*Some oscillation theorems for second order differential equations*, J. Math. Anal. Appl.**15**(1966), 442–446. MR**0203164****[2]**G. J. Butler,*On the oscillatory behaviour of a second order nonlinear differential equation*, Ann. Mat. Pura Appl. (4)**105**(1975), 73–92. MR**0425252****[3]**G. J. Butler,*Oscillation theorems for a nonlinear analogue of Hill’s equation*, Quart. J. Math. Oxford Ser. (2)**27**(1976), no. 106, 159–171. MR**0409976****[4]**G. J. Butler,*Integral averages and the oscillation of second order ordinary differential equations*, SIAM J. Math. Anal.**11**(1980), no. 1, 190–200. MR**556509**, 10.1137/0511017**[5]**Philip Hartman,*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR**0171038****[6]**Philip Hartman and Aurel Wintner,*On non-oscillatory linear differential equations*, Amer. J. Math.**75**(1953), 717–730. MR**0059421****[7]**Takeshi Kura,*Oscillation theorems for a second order sublinear ordinary differential equation*, Proc. Amer. Math. Soc.**84**(1982), no. 4, 535–538. MR**643744**, 10.1090/S0002-9939-1982-0643744-8**[8]**Man Kam Kwong and James S. W. Wong,*On the oscillation and nonoscillation of second order sublinear equations*, Proc. Amer. Math. Soc.**85**(1982), no. 4, 547–551. MR**660602**, 10.1090/S0002-9939-1982-0660602-3**[9]**Man Kam Kwong and James S. W. Wong,*An application of integral inequality to second order nonlinear oscillation*, J. Differential Equations**46**(1982), no. 1, 63–77. MR**677584**, 10.1016/0022-0396(82)90110-3**[10]**Hiroshi Onose,*On Butler’s conjecture for oscillation of an ordinary differential equation*, Quart. J. Math. Oxford Ser. (2)**34**(1983), no. 134, 235–239. MR**698209**, 10.1093/qmath/34.2.235**[11]**William F. Trench,*Asymptotic integration of linear differential equations subject to integral smallness conditions involving ordinary convergence*, SIAM J. Math. Anal.**7**(1976), no. 2, 213–221. MR**0402214****[12]**William F. Trench,*Asymptotic integration of 𝑦⁽ⁿ⁾+𝑃(𝑡)𝑦^{𝛾}=𝑓(𝑡) under mild integral smallness conditions*, Funkcial. Ekvac.**26**(1983), no. 2, 197–209. MR**736901****[13]**D. Willett,*On the oscillatory behavior of the solutions of second order linear differential equations*, Ann. Polon. Math.**21**(1969), 175–194. MR**0249723****[14]**Aurel Wintner,*On almost free linear motions*, Amer. J. Math.**71**(1949), 595–602. MR**0030674****[15]**James S. W. Wong,*On two theorems of Waltman*, SIAM J. Appl. Math.**14**(1966), 724–728. MR**0206409****[16]**James S. W. Wong,*Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients*, Trans. Amer. Math. Soc.**144**(1969), 197–215. MR**0251305**, 10.1090/S0002-9947-1969-0251305-6

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34D05

Retrieve articles in all journals with MSC: 34D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0732107-9

Keywords:
Asymptotic integration,
asymptotic behavior,
differential equations

Article copyright:
© Copyright 1984
American Mathematical Society