Asymptotic behavior of solutions of second order differential equations with integrable coefficients

Author:
Manabu Naito

Journal:
Trans. Amer. Math. Soc. **282** (1984), 577-588

MSC:
Primary 34D05

DOI:
https://doi.org/10.1090/S0002-9947-1984-0732107-9

MathSciNet review:
732107

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The differential equation , , is considered under the condition that exists and is finite, and necessary and/or sufficient conditions are given for this equation to have solutions which behave asymptotically like nontrivial linear functions .

**[1]**N. P. Bhatia,*Some oscillation theorems for second order differential equations*, J. Math. Anal. Appl.**15**(1966), 442-446. MR**0203164 (34:3017)****[2]**G. J. Butler,*On the oscillatory behaviour of a second order nonlinear differential equation*, Ann. Mat. Pura Appl.**105**(1975), 73-92. MR**0425252 (54:13209)****[3]**-,*Oscillation theorems for a nonlinear analogue of Hill's equation*, Quart. J. Math. Oxford Ser. (2)**27**(1976), 159-171. MR**0409976 (53:13727)****[4]**-,*Integral averages and the oscillation of second order ordinary differential equations*, SIAM J. Math. Anal.**11**(1980), 190-200. MR**556509 (80m:34028)****[5]**P. Hartman,*Ordinary differential equations*, Wiley, New York, 1964. MR**0171038 (30:1270)****[6]**P. Hartman and A. Wintner,*On non-oscillatory linear differential equations*, Amer. J. Math.**75**(1953), 717-730. MR**0059421 (15:527c)****[7]**T. Kura,*Oscillation theorems for a second order sublinear ordinary differential equation*, Proc. Amer. Math. Soc.**84**(1982), 535-538. MR**643744 (83b:34044)****[8]**M. K. Kwong and J. S. W. Wong,*On the oscillation and nonoscillation of second order sublinear equations*, Proc. Amer. Math. Soc.**85**(1982), 547-551. MR**660602 (84g:34060)****[9]**-,*An application of integral inequality to second order nonlinear oscillation*, J. Differential Equations**46**(1982), 63-77. MR**677584 (84g:34059)****[10]**H. Onose,*On Butler's conjecture for oscillation of an ordinary differential equation*, Quart. J. Math. Oxford Ser. (2)**34**(1983), 235-239. MR**698209 (85b:34043)****[11]**W. F. Trench,*Asymptotic integration of linear differential equations subject to integral smallness conditions involving ordinary convergence*, SIAM J. Math. Anal.**7**(1976), 213-221. MR**0402214 (53:6035)****[12]**-,*Asymptotic integration of**under mild integral smallness conditions*, Funkcial. Ekvac. (to appear). MR**736901 (85k:34100)****[13]**D. Willett,*On the oscillatory behavior of the solutions of second order linear differential equations*, Ann. Polon. Math.**21**(1969), 175-194. MR**0249723 (40:2964)****[14]**A. Wintner,*On almost free linear motions*, Amer. J. Math.**71**(1949), 595-602. MR**0030674 (11:33f)****[15]**J. S. W. Wong,*On two theorems of Waltman*, SIAM J. Appl. Math.**14**(1966), 724-728. MR**0206409 (34:6228)****[16]**-,*Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients*, Trans. Amer. Math. Soc.**144**(1969), 197-215. MR**0251305 (40:4536)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34D05

Retrieve articles in all journals with MSC: 34D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0732107-9

Keywords:
Asymptotic integration,
asymptotic behavior,
differential equations

Article copyright:
© Copyright 1984
American Mathematical Society