Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Jordan domains and the universal Teichmüller space

Author: Barbara Brown Flinn
Journal: Trans. Amer. Math. Soc. 282 (1984), 603-610
MSC: Primary 30C60; Secondary 30C35, 32G15
MathSciNet review: 732109
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ denote the lower half plane and let $ B(L)$ denote the Banach space of analytic functions $ f$ in $ L$ with $ {\left\Vert f \right\Vert _L} < \infty $, where $ {\left\Vert f \right\Vert _L}$ is the suprenum over $ z \in L$ of the values $ \left\vert {f(z)} \right\vert{(text{Im} z)^2}$. The universal Teichmüller space, $ T$, is the subset of $ B(L)$ consisting of the Schwarzian derivatives of conformal mappings of $ L$ which have quasiconformal extensions to the extended plane. We denote by $ J$ the set

$\displaystyle \left\{ {{S_f}:f{\text{is conformal in }}L{\text{and }}f(L){\text{is a Jordan domain}}} \right\},$

which is a subset of $ B(L)$ contained in the Schwarzian space $ S$. In showing $ S - \bar T \ne \emptyset $, Gehring actually proves $ S - \bar J \ne \emptyset $. We give an example which demonstrates that $ J - \bar T \ne \emptyset $.

References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, N.J., 1966. MR 0200442 (34:336)
  • [2] A. F. Beardon and F. W. Gehring, Schwarzian derivatives, the Poincaré metric and the kernel function, Comment. Math. Helv. 55 (1980), 50-64. MR 569245 (81c:30020)
  • [3] F. W. Gehring, Univalent functions and the Schwarzian derivative, Comment. Math. Helv. 52 (1977), 561-572. MR 0457701 (56:15905)
  • [4] -, Spirals and the universal Teichmüller space, Acta Math. 141 (1978), 99-113. MR 0499134 (58:17076)
  • [5] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, Berlin, Heidelberg and New York, 1973. MR 0344463 (49:9202)
  • [6] B. G. Osgood, Univalence in multiply-connected domains, Ph.D. Thesis, The University of Michigan, Ann Arbor, 1980.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C60, 30C35, 32G15

Retrieve articles in all journals with MSC: 30C60, 30C35, 32G15

Additional Information

Keywords: Schwarzian derivative, quasicircle, universal Teichmüller space
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society