On maximal rearrangement inequalities for the Fourier transform
Authors:
W. B. Jurkat and G. Sampson
Journal:
Trans. Amer. Math. Soc. 282 (1984), 625643
MSC:
Primary 42B10; Secondary 26D15
MathSciNet review:
732111
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Suppose that is a measurable function on and denote by the decreasing rearrangement of (provided that it exists). We show that the dimensional Fourier transform satisfies (1) if and for . We also show that (2) if and is nonnegative and symmetrically decreasing. Inequality (2) implies that (1) is maximal in the sense that the left side reaches the right side if is nonnegative and symmetrically decreasing. Hence, (1) implies all other possible estimates in terms of and . The cases of (1) can be derived from the case (and same ) by a convexity principle which does not involve interpolation. The analogue of (1) for Fourier series is due to H. L. Montgomery if (then the extra condition on is automatically satisfied).
 [1]
Albert
Baernstein II, Integral means, univalent functions and circular
symmetrization, Acta Math. 133 (1974), 139–169.
MR
0417406 (54 #5456)
 [2]
R. M. Gabriel, A "star inequality" for harmonic functions, Proc. London Math. Soc. 34 (1932), 305313.
 [3]
G. H. Hardy, Orders of infinity, the "infinitärcalcül" of Paul DuBoisReymond, Cambridge Univ. Press, London and New York, 1910.
 [4]
G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 39.
 [5]
G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, London and New York, 1934.
 [6]
W.
B. Jurkat and G.
Sampson, On rearrangement and weight inequalities for the Fourier
transform, Indiana Univ. Math. J. 33 (1984),
no. 2, 257–270. MR 733899
(85k:42040), http://dx.doi.org/10.1512/iumj.1984.33.33013
 [7]
J.
E. Littlewood, On a theorem of Paley, J. London Math. Soc.
29 (1954), 387–395. MR 0063473
(16,126e)
 [8]
J.
E. Littlewood, On the inequalities between functions 𝑓 and
𝑓*, J. London Math. Soc. 35 (1960),
352–365. MR 0130945
(24 #A799)
 [9]
Hugh
L. Montgomery, A note on rearrangements of Fourier
coefficients, Ann. Inst. Fourier (Grenoble) 26
(1976), no. 2, v, 29–34 (English, with French summary). MR 0407517
(53 #11292)
 [10]
Benjamin
Muckenhoupt, Weighted norm inequalities for the
Fourier transform, Trans. Amer. Math. Soc.
276 (1983), no. 2,
729–742. MR
688974 (84m:42019), http://dx.doi.org/10.1090/S0002994719830688974X
 [11]
Elias
M. Stein and Guido
Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical
Series, No. 32. MR 0304972
(46 #4102)
 [12]
A.
Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge
University Press, New York, 1959. MR 0107776
(21 #6498)
 [1]
 A. Baernstein, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139169. MR 0417406 (54:5456)
 [2]
 R. M. Gabriel, A "star inequality" for harmonic functions, Proc. London Math. Soc. 34 (1932), 305313.
 [3]
 G. H. Hardy, Orders of infinity, the "infinitärcalcül" of Paul DuBoisReymond, Cambridge Univ. Press, London and New York, 1910.
 [4]
 G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 39.
 [5]
 G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, London and New York, 1934.
 [6]
 W. B Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Math. J. (to appear). MR 733899 (85k:42040)
 [7]
 J. E. Littlewood, On a theorem of Paley, J. London Math. Soc. 29 (1954), 387395. MR 0063473 (16:126e)
 [8]
 , On inequalities between and , J. London Math. Soc. 35 (1960), 352365. MR 0130945 (24:A799)
 [9]
 H. L. Montgomery, A note on rearrangements of Fourier coefficients, Ann. Inst. Fourier (Grenoble) 26 (1976), 2934. MR 0407517 (53:11292)
 [10]
 B. Muckenhoupt, Weighted norm inequalities for the Fourier transform, Trans. Amer. Math. Soc. 276 (1983), 729742. MR 688974 (84m:42019)
 [11]
 E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
 [12]
 A. Zygmund, Trigonometric series, Vol. 2, Cambridge Univ. Press, London and New York, 1959. MR 0107776 (21:6498)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
42B10,
26D15
Retrieve articles in all journals
with MSC:
42B10,
26D15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198407321110
PII:
S 00029947(1984)07321110
Article copyright:
© Copyright 1984 American Mathematical Society
