Projectively equivalent metrics subject to constraints

Author:
William Taber

Journal:
Trans. Amer. Math. Soc. **282** (1984), 711-737

MSC:
Primary 53C40; Secondary 53C50

DOI:
https://doi.org/10.1090/S0002-9947-1984-0732115-8

MathSciNet review:
732115

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This work examines the relationship between pairs of projectively equivalent Riemannian or Lorentz metrics and on a manifold that induce the same Riemannian metric on a hypersurface . In general such metrics must be equal. In the case of distinct metrics, the structure of the metrics and the manifold are strongly determined by the set, , of points at which and are conformally related. The space is locally a warped product manifold over the hypersurface . In the Lorentz setting, is empty. In the Riemannian case, contains at most two points. If is nonempty, then is isometric to a standard sphere. Furthermore, in the case that contains one point, natural hypotheses imply is diffeomorphic to . If contains two points is diffeomorphic to .

**[1]**Ralph Alexander,*Planes for which the lines are the shortest paths between points*, Illinois J. Math.**22**(1978), no. 2, 177–190. MR**490820****[2]**R. L. Bishop,*Clairaut submersions*, Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 21–31. MR**0334078****[3]**R. L. Bishop and B. O’Neill,*Manifolds of negative curvature*, Trans. Amer. Math. Soc.**145**(1969), 1–49. MR**0251664**, https://doi.org/10.1090/S0002-9947-1969-0251664-4**[4]**Luther Pfahler Eisenhart,*Riemannian Geometry*, Princeton University Press, Princeton, N. J., 1949. 2d printing. MR**0035081****[5]**D. Hilbert and S. Cohn-Vossen,*Geometry and the imagination*, Chelsea Publishing Company, New York, N. Y., 1952. Translated by P. Neményi. MR**0046650****[6]**Tosio Kato,*Perturbation theory for linear operators*, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR**0407617****[7]**Shoshichi Kobayashi and Katsumi Nomizu,*Foundations of differential geometry. Vol I*, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR**0152974****[8]**Ravindra Shripad Kulkarni,*Curvature and metric*, Ann. of Math. (2)**91**(1970), 311–331. MR**0257932**, https://doi.org/10.2307/1970580**[9]**R. G. Muhometov,*The problem of recovery of a two-dimensional Riemannian metric and integral geometry*, Soviet Math. Dokl.**18**(1977), 27-31.**[10]**Barrett O’Neill,*The fundamental equations of a submersion*, Michigan Math. J.**13**(1966), 459–469. MR**0200865****[11]**V. G. Romanov,*Integral geometry on the geodesics of an isotropic Riemannian metric*, Dokl. Akad. Nauk SSSR**241**(1978), no. 2, 290–293. MR**0500768****[12]**Rainer Kurt Sachs and Hung Hsi Wu,*General relativity for mathematicians*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, Vol. 48. MR**0503498****[13]**Michael Spivak,*A comprehensive introduction to differential geometry*, Vols. 1-5, Publish or Perish, Boston, Mass., 1975.**[14]**William Taber,*Distance constraints and projectively equivalent metrics*(in preparation).**[15]**Hermann Weyl,*Zur infinitesimalgeometrie: Einordung der projektiven und der konfermen auffassung*, Nachrichten von der Könglichen Gesellschaft der Wissenschaften zu Göttingen, Weidmannsche Buchhandling, Berlin, Germany, 1921.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C40,
53C50

Retrieve articles in all journals with MSC: 53C40, 53C50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0732115-8

Article copyright:
© Copyright 1984
American Mathematical Society