Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the proper holomorphic equivalence for a class of pseudoconvex domains


Author: M. Landucci
Journal: Trans. Amer. Math. Soc. 282 (1984), 807-811
MSC: Primary 32H35; Secondary 32F15
DOI: https://doi.org/10.1090/S0002-9947-1984-0732122-5
MathSciNet review: 732122
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A complete and explicit description of the holomorphic proper mappings between weakly pseudoconvex domains of the class $ {\Delta _p}$ (see ( *) below) is given.


References [Enhancements On Off] (What's this?)

  • [1] H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249-256. MR 0352531 (50:5018)
  • [2] S. Bell, Proper holomorphic mappings and the Bergman projection, Duke Math. J. 48 ( 1981 ). MR 610182 (82d:32011)
  • [3] -, Analytic hypoellipticity of $ \bar \partial $-Neumann problem and extendibility of holomorphic mappings, Acta Math. 147 (1981).
  • [4] K. Diederich and J. E. Fornaess, Proper holomorphic images of strictly pseudoconvex domains, preprint, 1981. MR 656667 (83g:32026)
  • [5] G. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Soviet Math. Dokl. 14 (1973), 858-862. MR 0328125 (48:6467)
  • [6] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math., Vol. 25, Springer-Verlag, Berlin and New York, 1966. MR 0217337 (36:428)
  • [7] S. Pincuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644-649. MR 0355109 (50:7586)
  • [8] R. Remmert and K. Stein, Eigentliche holomorphe Abbildungen, Math. Z. 73 (1960), 159-189. MR 0124528 (23:A1840)
  • [9] W. Rudin, Holomorphic maps that extend to automorphisms of a ball, Proc. Amer. Math. Soc. 81 (1981), 429-432. MR 597656 (82c:32012)
  • [10] -, Function theory in the unit ball of $ {C^n}$, Die Grundlehren der Math. Wissenschaften, Springer-Verlag, Berlin, 1980.
  • [11] S. Webster, Biholomorphic mappings and the Bergman kernel off the diagonal, Invent. Math. 51 (1979), 155-169. MR 528021 (81e:32029)
  • [12] E. Bedford and S. Bell, Proper self maps of weakly pseudoconvex domains, Math. Ann. 261 (1982), 47-49. MR 675205 (84c:32026)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32H35, 32F15

Retrieve articles in all journals with MSC: 32H35, 32F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0732122-5
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society