Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quadratic forms of height two


Author: Robert W. Fitzgerald
Journal: Trans. Amer. Math. Soc. 283 (1984), 339-351
MSC: Primary 11E81
DOI: https://doi.org/10.1090/S0002-9947-1984-0735427-7
MathSciNet review: 735427
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Quadratic forms of height two and leading form defined over the base field are determined over several fields. Also forms of height and degree two over an arbitrary field are classified.


References [Enhancements On Off] (What's this?)

  • [1] J. Arason, Excellence of $ F(\phi )/F$ for $ 2$-fold Pfister forms, Appendix II of [7].
  • [2] J. Arason and M. Knebusch, Über die Grade quadratischer Formen, Math. Ann. 234 (1978), 167-192. MR 0506027 (58:21933)
  • [3] R. Elman, Quadratic forms and the $ u$-invariant. III, Conf. Quadratic Forms, 1976 (G. Orzech, ed.), Queen's Papers on Pure and Appl. Math., No. 46, Queen's Univ., Kingston, Ont., 1977, pp. 422-444. MR 0491490 (58:10732)
  • [4] R. Elman and T. Y. Lam, Pfister forms and $ K$-theory of fields, J. Algebra 23 (1972), 181-213. MR 0302739 (46:1882)
  • [5] -, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194. MR 0314878 (47:3427)
  • [6] -, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42. MR 0401649 (53:5476)
  • [7] R. Elman, T. Y. Lam and A. Wadsworth, Amenable fields and Pfister extensions, Conf. Quadratic Forms, 1976 (G. Orzech, ed.), Queen's Papers on Pure and Appl. Math., No. 46, Queen's Univ. Kingston, Ont., 1977, pp. 445-492. MR 0560497 (58:27756)
  • [8] -, Function fields of Pfister forms, Invent. Math. 51 (1979), 61-75. MR 524277 (80m:10017)
  • [9] R. Fitzgerald, Function fields of quadratic forms, Math. Z. 178 (1981), 63-76. MR 627094 (83b:10021)
  • [10] -, Witt kernels of function field extensions, Pacific J. Math. 109 (1983), 89-106. MR 716291 (85d:11038)
  • [11] E. Gentile and D. Shapiro, Conservative quadratic forms, Math. Z. 163 (1978), 15-23. MR 510321 (80a:15027)
  • [12] M. Knebusch, Generic splitting of quadratic forms. I, Proc. London Math. Soc. (3) 33 (1976), 65-93. MR 0412101 (54:230)
  • [13] -, Generic splitting of quadratic forms. II, Proc. London Math. Soc. (3) 34 (1977), 1-31. MR 0427345 (55:379)
  • [14] M. Knebusch, A. Rosenberg and R. Ware, Structure of Witt rings, quotients of abelian group rings, and orderings of fields, Bull. Amer. Math. Soc. 77 (1971), 205-210. MR 0271091 (42:5974)
  • [15] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, New York, 1973. MR 0396410 (53:277)
  • [16] A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132. MR 0200270 (34:169)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11E81

Retrieve articles in all journals with MSC: 11E81


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0735427-7
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society