An integral version of the Brown-Gitler spectrum

Author:
Don H. Shimamoto

Journal:
Trans. Amer. Math. Soc. **283** (1984), 383-421

MSC:
Primary 55P42; Secondary 55P35, 55S10, 55S45, 57R19

MathSciNet review:
737876

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, certain spectra are studied whose behavior qualifies them as being integral versions of the Brown-Gitler spectra . The bulk of our work emphasizes the similarities between and , shown mainly using the techniques of Brown and Gitler. In analyzing the homotopy type of , we provide a free resolution over the Steenrod algebra for its cohomology and study its Adams spectral sequence. We also list conditions which characterize it at the prime . The paper begins, however, on a somewhat different topic, namely, the construction of a configuration space model for and other related spaces.

**[1]**A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger,*The 𝑚𝑜𝑑-𝑝 lower central series and the Adams spectral sequence*, Topology**5**(1966), 331–342. MR**0199862****[2]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573****[3]**Edgar H. Brown Jr. and Samuel Gitler,*A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra*, Topology**12**(1973), 283–295. MR**0391071****[4]**E. H. Brown, Jr., and F. P. Peterson,*The Brown-Gitler spectrum*, ,*and*(preprint).**[5]**Edgar H. Brown Jr. and Franklin P. Peterson,*Relations among characteristic classes. I*, Topology**3**(1964), no. suppl. 1, 39–52. MR**0163326****[6]**E. H. Brown Jr. and F. P. Peterson,*On the stable decomposition of Ω²𝑆^{𝑟+2}*, Trans. Amer. Math. Soc.**243**(1978), 287–298. MR**0500933**, 10.1090/S0002-9947-1978-0500933-4**[7]**Frederick R. Cohen, Thomas J. Lada, and J. Peter May,*The homology of iterated loop spaces*, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR**0436146****[8]**F. R. Cohen, J. P. May, and L. R. Taylor,*𝐾(𝑍,0) and 𝐾(𝑍₂,0) as Thom spectra*, Illinois J. Math.**25**(1981), no. 1, 99–106. MR**602900****[9]**Ralph L. Cohen,*The geometry of Ω²𝑆³ and braid orientations*, Invent. Math.**54**(1979), no. 1, 53–67. MR**549545**, 10.1007/BF01391176**[10]**Donald M. Davis, Sam Gitler, and Mark Mahowald,*The stable geometric dimension of vector bundles over real projective spaces*, Trans. Amer. Math. Soc.**268**(1981), no. 1, 39–61. MR**628445**, 10.1090/S0002-9947-1981-0628445-8**[11]**P. Goerss,*Results on Brown-Gitler type spectra*, Ph. D. Dissertation, M. I. T., 1983.**[12]**I. M. James,*Reduced product spaces*, Ann. of Math. (2)**62**(1955), 170–197. MR**0073181****[13]**Mark Mahowald,*𝑏𝑜-resolutions*, Pacific J. Math.**92**(1981), no. 2, 365–383. MR**618072****[14]**Mark Mahowald,*A new infinite family in ₂𝜋_{*}^{𝑠}*, Topology**16**(1977), no. 3, 249–256. MR**0445498****[15]**Mark Mahowald,*Ring spectra which are Thom complexes*, Duke Math. J.**46**(1979), no. 3, 549–559. MR**544245****[16]**J. P. May,*The geometry of iterated loop spaces*, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. MR**0420610****[17]**John Milnor,*The Steenrod algebra and its dual*, Ann. of Math. (2)**67**(1958), 150–171. MR**0099653****[18]**N. E. Steenrod,*Cohomology operations*, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. MR**0145525**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55P42,
55P35,
55S10,
55S45,
57R19

Retrieve articles in all journals with MSC: 55P42, 55P35, 55S10, 55S45, 57R19

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0737876-X

Keywords:
Brown-Gitler spectrum,
Steenrod algebra,
iterated loop space,
Thom spectrum,
-algebra,
Adams spectral sequence,
orientability of manifolds,
Postnikov tower

Article copyright:
© Copyright 1984
American Mathematical Society