An integral version of the Brown-Gitler spectrum

Author:
Don H. Shimamoto

Journal:
Trans. Amer. Math. Soc. **283** (1984), 383-421

MSC:
Primary 55P42; Secondary 55P35, 55S10, 55S45, 57R19

DOI:
https://doi.org/10.1090/S0002-9947-1984-0737876-X

MathSciNet review:
737876

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, certain spectra are studied whose behavior qualifies them as being integral versions of the Brown-Gitler spectra . The bulk of our work emphasizes the similarities between and , shown mainly using the techniques of Brown and Gitler. In analyzing the homotopy type of , we provide a free resolution over the Steenrod algebra for its cohomology and study its Adams spectral sequence. We also list conditions which characterize it at the prime . The paper begins, however, on a somewhat different topic, namely, the construction of a configuration space model for and other related spaces.

**[1]**A. K. Bousfield et al.,*The**lower central series and the Adams spectra sequence*, Topology**5**(1966), 331-342. MR**0199862 (33:8002)****[2]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Math., vol. 304, Springer-Verlag, New York, 1972. MR**0365573 (51:1825)****[3]**E. H. Brown, Jr., and S. Gitler,*A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra*, Topology**12**(1973), 283-295. MR**0391071 (52:11893)****[4]**E. H. Brown, Jr., and F. P. Peterson,*The Brown-Gitler spectrum*, ,*and*(preprint).**[5]**-,*Relations among characteristic classes*. I, Topology**3**(1964), 39-52. MR**0163326 (29:629)****[6]**-,*On the stable decomposition of*, Trans. Amer. Math. Soc.**243**(1978), 287-298. MR**0500933 (58:18424)****[7]**F. R. Cohen, T. J. Lada and J. P. May,*The homology of iterated loop spaces*, Lecture Notes in Math., vol. 533, Springer-Verlag. New York, 1976. MR**0436146 (55:9096)****[8]**F. R. Cohen, J. P. May and L. R. Taylor,*and**as Thom spectra*, Illinois J. Math.**25**(1981), 99-106. MR**602900 (82h:55008)****[9]**R. L. Cohen,*The geometry of**and braid orientations*, Invent. Math.**54**(1979), 53-67. MR**549545 (81a:55013)****[10]**D. M. Davis, S. Gitler and M. Mahowald,*The stable geometric dimension of vector bundles over real projective spaces*, Trans. Amer. Math. Soc.**268**(1981), 39-61. MR**628445 (83c:55006)****[11]**P. Goerss,*Results on Brown-Gitler type spectra*, Ph. D. Dissertation, M. I. T., 1983.**[12]**I. M. James,*Reduced product spaces*, Ann. of Math. (2)**62**(1955), 170-197. MR**0073181 (17:396b)****[13]**M. Mahowald, -*resolutions*, Pacific J. Math.**92**(1981), 365-383. MR**618072 (82m:55017)****[14]**-,*A new infinite family in*, Topology**16**(1977), 249-256. MR**0445498 (56:3838)****[15]**-,*Ring spectra which are Thom complexes*, Duke Math. J.**46**(1979), 549-559. MR**544245 (81f:55010)****[16]**J. P. May,*The geometry of iterated loop spaces*, Lecture Notes in Math., vol. 271, Springer-Verlag, New York, 1972. MR**0420610 (54:8623b)****[17]**J. Milnor,*The Steenrod algebra and its dual*, Ann. of Math. (2)**67**(1958), 150-171. MR**0099653 (20:6092)****[18]**N. E. Steenrod and D. B. A. Epstein,*Cohomology operations*, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR**0145525 (26:3056)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55P42,
55P35,
55S10,
55S45,
57R19

Retrieve articles in all journals with MSC: 55P42, 55P35, 55S10, 55S45, 57R19

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0737876-X

Keywords:
Brown-Gitler spectrum,
Steenrod algebra,
iterated loop space,
Thom spectrum,
-algebra,
Adams spectral sequence,
orientability of manifolds,
Postnikov tower

Article copyright:
© Copyright 1984
American Mathematical Society