Pure states on some group-invariant -algebras

Author:
Geoffrey L. Price

Journal:
Trans. Amer. Math. Soc. **283** (1984), 533-562

MSC:
Primary 46L30; Secondary 22D25

DOI:
https://doi.org/10.1090/S0002-9947-1984-0737883-7

MathSciNet review:
737883

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a UHF algebra of Glimm type , i.e., , where are matrix algebras. We define an AF-subalgebra of , consisting of those elements of invariant under a group of automorphisms of product type. is shown to be generated by an embedding of , the discrete group of finite permutations on countably many symbols. Let be a pure product state on , its restriction to . Let be a one-dimensional projection with corresponding projections . Then if both (i) , and (ii) hold, is not pure. is shown to be pure if there exist orthogonal one-dimensional projections of with corresponding projections such that or , , and for at most one .

**[1]**Ola Bratteli,*Inductive limits of finite dimensional 𝐶*-algebras*, Trans. Amer. Math. Soc.**171**(1972), 195–234. MR**0312282**, https://doi.org/10.1090/S0002-9947-1972-0312282-2**[2]**James G. Glimm,*On a certain class of operator algebras*, Trans. Amer. Math. Soc.**95**(1960), 318–340. MR**0112057**, https://doi.org/10.1090/S0002-9947-1960-0112057-5**[3]**A. Guichardet,*Produits tensoriels infinis et représentations des relations d’anticommutation*, Ann. Sci. École Norm. Sup. (3)**83**(1966), 1–52 (French). MR**0205097****[4]**Robert T. Powers,*Representations of uniformly hyperfinite algebras and their associated von Neumann rings*, Ann. of Math. (2)**86**(1967), 138–171. MR**0218905**, https://doi.org/10.2307/1970364**[5]**-,*algebras and their applications to representations of the anti-commutation relations*, Cargèse Lectures in Physics**4**(1970), 137-168.**[6]**M. Saito,*Representations of the rotationally invariant algebra of quantum spin systems*, Thesis, University of Pennsylvania, 1979.**[7]**Hermann Weyl,*The classical groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR**1488158****[8]**Jacques Dixmier,*𝐶*-algebras*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett; North-Holland Mathematical Library, Vol. 15. MR**0458185****[9]**James G. Glimm and Richard V. Kadison,*Unitary operators in 𝐶*-algebras*, Pacific J. Math.**10**(1960), 547–556. MR**0115104****[10]**B. M. Baker,*Free states of the gauge invariant canonical anticommutation relations*, Trans. Amer. Math. Soc.**237**(1978), 35–61. MR**479361**, https://doi.org/10.1090/S0002-9947-1978-0479361-6**[11]**G. Stamatopoulos, Thesis, University of Pennsylvania, 1974.**[12]**B. M. Baker and R. T. Powers,*Product states and 𝐶*-dynamical system of product type*, J. Funct. Anal.**50**(1983), no. 2, 229–266. MR**693230**, https://doi.org/10.1016/0022-1236(83)90069-1**[13]**-,*Product states of the gauge-invariant and rotationally-invariant**algebras*, J. Operator Theory**10**(1983).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46L30,
22D25

Retrieve articles in all journals with MSC: 46L30, 22D25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0737883-7

Keywords:
Pure state,
factor state,
product state,
UHF,
AF-algebras,
lattice algebra,
invariant algebra,
symmetric group,
GNS representation

Article copyright:
© Copyright 1984
American Mathematical Society