Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Pure states on some group-invariant $ C\sp{\ast} $-algebras


Author: Geoffrey L. Price
Journal: Trans. Amer. Math. Soc. 283 (1984), 533-562
MSC: Primary 46L30; Secondary 22D25
DOI: https://doi.org/10.1090/S0002-9947-1984-0737883-7
MathSciNet review: 737883
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{A}$ be a UHF algebra of Glimm type $ {n^\infty }$, i.e., $ \mathfrak{A} = \otimes _{k \geqslant 1}^{\ast}{N_k}$, where $ N = {N_1} = {N_2} = \cdots $ are $ n \times n$ matrix algebras. We define an AF-subalgebra $ {\mathfrak{A}^G}$ of $ \mathfrak{A}$, consisting of those elements of $ \mathfrak{A}$ invariant under a group of automorphisms $ \{ {\alpha _g}:g \in G = \operatorname{SU} (n)\} $ of product type. $ {\mathfrak{A}^G}$ is shown to be generated by an embedding of $ S(\infty )$, the discrete group of finite permutations on countably many symbols. Let $ \omega $ be a pure product state on $ \mathfrak{A}$, $ {\omega ^G}$ its restriction to $ {\mathfrak{A}^G}$. Let $ e \in N$ be a one-dimensional projection with corresponding projections $ {e^k} \in {N_k}$. Then if both (i) $ {\Sigma _{k \geqslant 1}}\omega ({e^k}) = \infty $, and (ii) $ 0 < {\Sigma _{k \geqslant 1}}\omega ({e^k})[1 - \omega ({e^k})] < \infty $ hold, $ {\omega ^G}$ is not pure. $ {\omega ^G}$ is shown to be pure if there exist orthogonal one-dimensional projections $ \{ {p_i}:1 \leqslant i \leqslant n\} $ of $ N$ with corresponding projections $ p_i^k \in {N_k}$ such that $ \omega (p_i^k) = 0$ or $ 1$, $ 1 \leqslant i \leqslant n,\,k \geqslant 1$, and $ 0 < {\Sigma _{k \geqslant 1}}\omega (p_i^k) < \infty $ for at most one $ i$.


References [Enhancements On Off] (What's this?)

  • [1] O. Bratteli, Inductive limits of finite-dimensional $ {C^{\ast}}$-algebras, Trans. Amer. Math. Soc. 17 (1972), 195-234. MR 0312282 (47:844)
  • [2] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340. MR 0112057 (22:2915)
  • [3] A. Guichardet, Produits tensoriels infinis et représentations des relations d'anticommutation, Ann. Sci. École Norm Sup. (4) 83 (1966), 1-52. MR 0205097 (34:4932)
  • [4] R. T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138-171. MR 0218905 (36:1989)
  • [5] -, $ UHF$ algebras and their applications to representations of the anti-commutation relations, Cargèse Lectures in Physics 4 (1970), 137-168.
  • [6] M. Saito, Representations of the rotationally invariant algebra of quantum spin systems, Thesis, University of Pennsylvania, 1979.
  • [7] H. Weyl, The Classical groups: their invariants and representations, Princeton Univ. Press, Princeton, N.J., 1939. MR 1488158 (98k:01049)
  • [8] J. Dixmier, $ {C^{\ast}}$-algebras, North-Holland, New York, 1977. MR 0458185 (56:16388)
  • [9] J. Glimm and R. V. Kadison, Unitary operators in $ {C^{\ast}}$-algebras, Pacific J. Math. 10 (1960), 547-556. MR 0115104 (22:5906)
  • [10] B. M. Baker, Free states of the gauge invariant canonical anticommutation relations, Trans. Amer. Math. Soc. 237 (1978), 35-61. MR 479361 (80b:46081)
  • [11] G. Stamatopoulos, Thesis, University of Pennsylvania, 1974.
  • [12] B. M. Baker and R. T. Powers, Product states and $ {C^{\ast}}$-dynamical systems of product type, J. Funct. Anal. 50 (1983), 229-266. MR 693230 (84f:46091)
  • [13] -, Product states of the gauge-invariant and rotationally-invariant $ CAR$ algebras, J. Operator Theory 10 (1983).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L30, 22D25

Retrieve articles in all journals with MSC: 46L30, 22D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0737883-7
Keywords: Pure state, factor state, product state, UHF, AF-algebras, lattice algebra, invariant algebra, symmetric group, GNS representation
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society