Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Subordination-preserving integral operators


Authors: Sanford S. Miller, Petru T. Mocanu and Maxwell O. Reade
Journal: Trans. Amer. Math. Soc. 283 (1984), 605-615
MSC: Primary 30C80; Secondary 30C45
DOI: https://doi.org/10.1090/S0002-9947-1984-0737887-4
MathSciNet review: 737887
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \beta $ and $ \gamma $ be complex numbers and let $ H$ be the space of functions regular in the unit disc. Subordination of functions $ f$, $ g \in H$ is denoted by $ f \prec g$. Let $ K \subset H$ and let the operator $ A:K \to H$ be defined by $ F = A(f)$, where

$\displaystyle F(z) = {\left[ {\frac{1} {{{z^\gamma }}}\int_0^z {{f^\beta }(t){t^{\gamma - 1}}dt} } \right]^{1/\beta }}.$

The authors determine conditions under which

$\displaystyle f \prec g \Rightarrow A(f) \prec A(g),$

and then use this result to obtain new distortion theorems for some classes of regular functions.

References [Enhancements On Off] (What's this?)

  • [1] G. M. Goluzin, On the majorization principle in function theory, Dokl. Akad. Nauk SSSR 42 (1953), 647-650. (Russian)
  • [2] D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195. MR 0374403 (51:10603)
  • [3] Y. Komatu, On starlike and convex mappings of a unit circle, Kodai Math. Sem. Rep. 13 (1961), 123-126. MR 24A-253. MR 0131526 (24:A1376)
  • [4] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978) 289-305. MR 506307 (80f:30009)
  • [5] -, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171. MR 616267 (83c:30017)
  • [6] -, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations (to appear). MR 780494 (86m:34009)
  • [7] S. S. Miller, P. T. Mocanu and M. O. Reade, Bazilevič functions and generalized convexity, Rev. Roumaine Math. Pures Appl. 23 (1974), 213-224. MR 0338340 (49:3105)
  • [8] -, Starlike integral operators, Pacific J. Math. 79 (1978), 157-168. MR 526674 (80g:30008)
  • [9] Ch. Pommerenke, Univalent functions, Vanderhoeck & Ruprecht, Göttingen, 1975. MR 0507768 (58:22526)
  • [10] K. Sakaguchi, A note on $ p$-valent functions, J. Math. Soc. Japan 14 (1962), 312-321. MR 26-6383. MR 0148886 (26:6383)
  • [11] S. Singh and R. Singh, Subordination by univalent functions, Proc. Amer. Math. Soc. 82 (1981), 39-47. MR 603598 (82f:30019)
  • [12] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775-777. MR 0269827 (42:4722)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C80, 30C45

Retrieve articles in all journals with MSC: 30C80, 30C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0737887-4
Keywords: Subordination, integral operator, Loewner chain, univalent function
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society