Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A partial order on the regions of $ {\bf R}\sp{n}$ dissected by hyperplanes


Author: Paul H. Edelman
Journal: Trans. Amer. Math. Soc. 283 (1984), 617-631
MSC: Primary 51M20; Secondary 06A10, 52A25
DOI: https://doi.org/10.1090/S0002-9947-1984-0737888-6
MathSciNet review: 737888
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study a partial order on the regions of $ {{\mathbf{R}}^n}$ dissected by hyperplanes. This includes a computation of the Möbius function and, in some cases, of the homotopy type. Applications are presented to zonotopes, the weak Bruhat order on Weyl groups and acyclic orientations of graphs.


References [Enhancements On Off] (What's this?)

  • [A] M. Aigner, Combinatorial theory, Springer-Verlag, New York, 1979. MR 542445 (80h:05002)
  • [BB] K. Baclawski and A. Björner, Fixed points in partially ordered sets, Adv. in Math. 31 (1979), 263-287. MR 532835 (81c:06001)
  • [Ber] C. Berge, Principles of combinatorics, Academic Press, New York, 1970. MR 0270922 (42:5805)
  • [Bj1] A. Björner, Homotopy type of posets and lattice complementation, J. Combin. Theory Ser. A. 30 (1981), 90-100. MR 607041 (82k:06001)
  • [Bj2] -, The weak ordering of a Coxeter group (to appear).
  • [Bj3] -, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Report #3, Dept. of Math., Univ. of Stockholm, 1982.
  • [BW] A. Björner and M. Wachs, Bruhat order of Coxeter groups and shellability, Adv. in Math. 43 (1982), 87-100. MR 644668 (83i:20043)
  • [Bo] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [BM] H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197-205. MR 0328944 (48:7286)
  • [Co] R. Cordovil, A combinatorial perspective on the non-Radon partition, J. Combin. Theory Ser. A (to appear). MR 773553 (87e:52003a)
  • [E1] P. H. Edelman, The Bruhat order of the symmetric group is lexicographically shellable, Proc. Amer. Math. Soc. 82 (1981), 355-358. MR 612718 (82j:06004)
  • [Gre] C. Greene, Acyclic orientations (Notes), Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht, 1977, pp. 65-68.
  • [GZ] C. Greene and T. Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions and orientations of graphs, Trans. Amer. Math. Soc. 280 (1983), 97-126. MR 712251 (84k:05032)
  • [Gru] B. Grünbaum, Convex polytopes, Wiley, London, 1967. MR 0226496 (37:2085)
  • [GR] G. Guilbaud and P. Rosenstiehl, Analyse algébrique d'un scrutin, Math. Sci. Humaines 4 (1960), 9-33.
  • [H] J. Humphreys, Introduction to Lie algrebras and representation theory, Springer-Verlag, New York, 1972. MR 0323842 (48:2197)
  • [La] J. Lawrence, personal communication, 1982.
  • [M] P. McMullen, On zonotopes, Trans. Amer. Math. Soc. 159 (1971), 91-109. MR 0279689 (43:5410)
  • [OS] P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189. MR 558866 (81e:32015)
  • [Pr] R. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982), 104-126. MR 665167 (84j:20044)
  • [Pu] G. Purdy, Some combinatorial problems in the plane, Proc. N. Y. Acad. Sci. (to appear). MR 809192 (87b:52021)
  • [R] G.-C. Rota, On the foundations of combinatorial theory. I: Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete 2 (1964), 340-368. MR 0174487 (30:4688)
  • [Sh] G. C. Shephard, Combinatorial properties of associated zonotopes, Canad. J. Math. 26 (1974), 302-321. MR 0362054 (50:14496)
  • [St] R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser A 32 (1982), 132-161. MR 654618 (83d:06002)
  • [Te] H. Terao, Generalized exponents of a free arramgement of hyperplanes and Shephard-Todd-Brieskorn formula, Invent. Math. 63 (1981), 159-179. MR 608532 (82e:32018b)
  • [Z1] T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc., No. 154, 1975. MR 0357135 (50:9603)
  • [Z2] -, The geometry of root systems and signed graphs, Amer. Math. Monthly 88 (1981), 88-105. MR 606249 (82g:05012)
  • [Z3] -, Signed graphs, Discrete Appl. Math. 4 (1982), 47-74. MR 676405 (84e:05095a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 51M20, 06A10, 52A25

Retrieve articles in all journals with MSC: 51M20, 06A10, 52A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0737888-6
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society