Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Concatenations applied to analytic hypoellipticity of operators with double characteristics


Author: Kil Hyun Kwon
Journal: Trans. Amer. Math. Soc. 283 (1984), 753-763
MSC: Primary 35H05; Secondary 22E30, 58G05
DOI: https://doi.org/10.1090/S0002-9947-1984-0737898-9
MathSciNet review: 737898
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the method of concatenations to get a sufficient condition for a class of analytic pseudodifferential operators with double characteristics to be analytic hypoelliptic.


References [Enhancements On Off] (What's this?)

  • [1] L. Boutet de Monvel, Opérateurs pseudodifferentiels analytiques et opérateurs d'ordre infini, Ann. Inst. Fourier (Grenoble) 22 (1972), 229-268. MR 0341189 (49:5939)
  • [2] -, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math., 27 (1974), 585-639. MR 0370271 (51:6498)
  • [3] L. Boutet de Monvel and F. Treves, On a class of systems of pseudodifferential equations with double characteristics, Comm. Pure Appl. Math. 27 (1974), 59-89. MR 0350232 (50:2725)
  • [4] P. C. Greiner, and E. M. Stein, Estimates for the $ \overline \partial $-Neumann problem, Math. Notes No. 19, Princeton Univ. Press, Princeton, N.J., 1977. MR 0499319 (58:17218)
  • [5] A. Grigis, Hypoellipticité et paramétrix pour des opérateurs pseudodifférentiels à caractéristiques doubles, Astérisque 34-35 (1976), 183-205. MR 0488185 (58:7748)
  • [6] A. Grigis and L. P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, preprint.
  • [7] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. Partial Differential Equations 6 (1981), 1-90. MR 597752 (82g:35030)
  • [8] J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85-130. MR 0352749 (50:5236)
  • [9] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, preprint.
  • [10] D. S. Tartakoff, Local analytic hypoellipticity for $ {\square _b}$ on non-degenerate Cauchy-Riemann manifolds, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 3027-3028. MR 499657 (80g:58045)
  • [11] -, Elementary proofs of analytic hypoellipticity for $ {\square _b}$ and the $ \overline \partial $-Neumann problem, Astérisque 89-90 (1981), 85-116.
  • [12] F. Treves, Concatenations of second order evolution equations applied to local solvability and hypoellipticity, Comm. Pure Appl. Math. 24 (1973), 201-250. MR 0340804 (49:5554)
  • [13] -, Analytic hypoellipticity of a class of pseudodifferential operators with double characteristics and applications to the $ \overline \partial $-Neumann problem, Comm. Partial Differential Equations 3 (1978), 475-642. MR 0492802 (58:11867)
  • [14] -, Introduction to pseudodifferential and Fourier integral operators, Vols. 1 & 2, Plenum Press, New York, 1980. MR 597144 (82i:35173)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35H05, 22E30, 58G05

Retrieve articles in all journals with MSC: 35H05, 22E30, 58G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0737898-9
Keywords: Analytic hypoelliptic, concatenations, double characteristic
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society