Filters and the weak almost periodic compactification of a discrete semigroup

Authors:
John F. Berglund and Neil Hindman

Journal:
Trans. Amer. Math. Soc. **284** (1984), 1-38

MSC:
Primary 22A15; Secondary 43A60

MathSciNet review:
742410

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The weak almost periodic compactification of a semigroup is a compact semitopological semigroup with certain universal properties relative to the original semigroup. It is not, in general, a topological compactification. In this paper an internal construction of the weak almost periodic compactification of a discrete semigroup is constructed as a space of filters, and it is shown that for discrete semigroups, the compactification is usually topological. Other results obtained on the way to the main one include descriptions of weak almost periodic functions on closed subsemigroups of topological groups, conditions for functions on the additive natural numbers or on the integers to be weak almost periodic, and an example to show that the weak almost periodic compactification of the natural numbers is not the closure of the natural numbers in the weak almost periodic compactification of the integers.

**[1]**John F. Berglund,*On extending almost periodic functions*, Pacific J. Math.**33**(1970), 281–289. MR**0412742****[2]**J. F. Berglund and K. H. Hofmann,*Compact semitopological semigroups and weakly almost periodic functions*, Lecture Notes in Mathematics, No. 42, Springer-Verlag, Berlin-New York, 1967. MR**0223483****[3]**J. F. Berglund, H. D. Junghenn, and P. Milnes,*Compact right topological semigroups and generalizations of almost periodicity*, Lecture Notes in Mathematics, vol. 663, Springer, Berlin, 1978. MR**513591****[4]**R. B. Burckel,*Weakly almost periodic functions on semigroups*, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR**0263963****[5]**W. W. Comfort,*Ultrafilters: some old and some new results*, Bull. Amer. Math. Soc.**83**(1977), no. 4, 417–455. MR**0454893**, 10.1090/S0002-9904-1977-14316-4**[6]**N. Dunford and J. T. Schwartz,*Linear operators*. I, Wiley, New York, 1964.**[7]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199****[8]**E. Hewitt and K. A. Ross,*Abstract harmonic analysis*. I, Springer-Verlag, New York, 1963.**[9]**Neil Hindman,*On density, translates, and pairwise sums of integers*, J. Combin. Theory Ser. A**33**(1982), no. 2, 147–157. MR**677568**, 10.1016/0097-3165(82)90003-6**[10]**Neil Hindman,*Sums equal to products in 𝛽𝑁*, Semigroup Forum**21**(1980), no. 2-3, 221–255. MR**590754**, 10.1007/BF02572552**[11]**Neil Hindman,*Ultrafilters and combinatorial number theory*, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979) Lecture Notes in Math., vol. 751, Springer, Berlin, 1979, pp. 119–184. MR**564927****[12]**Karl Heinrich Hofmann and Paul S. Mostert,*Elements of compact semigroups*, Charles E. Merr ll Books, Inc., Columbus, Ohio, 1966. MR**0209387****[13]**Jimmie D. Lawson,*Additional notes on continuity in semitopological semigroups*, Semigroup Forum**12**(1976), no. 3, 265–280. MR**0405381****[14]**J. D. Lawson,*Joint continuity in semitopological semigroups*, Illinois J. Math.**18**(1974), 275–285. MR**0335674****[15]**K. de Leeuw and I. Glicksberg,*Applications of almost periodic compactifications*, Acta Math.**105**(1961), 63–97. MR**0131784**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22A15,
43A60

Retrieve articles in all journals with MSC: 22A15, 43A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0742410-4

Article copyright:
© Copyright 1984
American Mathematical Society