Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sieved ultraspherical polynomials


Authors: Waleed Al-Salam, W. R. Allaway and Richard Askey
Journal: Trans. Amer. Math. Soc. 284 (1984), 39-55
MSC: Primary 33A45; Secondary 33A65, 42C05
DOI: https://doi.org/10.1090/S0002-9947-1984-0742411-6
MathSciNet review: 742411
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The continuous $ q$-ultraspherical polynomials contain a number of important examples as limiting or special cases. One of these arose in Allaway's Ph.D. thesis. In a previous paper we solved a characterization problem essentially equivalent to Allaway's and showed that these polynomials arose from the $ q$-ultraspherical polynomials when $ q$ approached a root of unity. A second class of such polynomials is found, and the recurrence relation and orthogonality relation are found for each of these polynomials. The orthogonality is interesting because the weight function has a finite number of zeros in $ (-1, 1)$. Generating functions and other formulas are also found.


References [Enhancements On Off] (What's this?)

  • [1] W. Al-Salam, Wm. R. Allaway and R. Askey, A characterization of the continuous $ q$-ultraspherical polynomials (to appear). MR 749641 (86a:33007)
  • [2] Wm. R. Allaway, The identification of a class of orthogonal polynomials, Ph.D. thesis, University of Alberta, Canada, 1972.
  • [3] G. E. Andrews, The theory of partitions, Addison-Wesley, Reading, Mass., 1977. MR 0557013 (58:27738)
  • [4] R. Askey, The $ q$-gamma and $ q$-beta functions, Applicable Analysis 8 (1978), 125-141. MR 523950 (80h:33003)
  • [5] -, Ramanujan's extensions of the gamma and beta functions, Amer. Math. Monthly 87 (1980), 346-359. MR 567718 (82g:01030)
  • [6] R. Askey and M. Ismail, The Rogers $ q$-ultraspherical polynomials, Approximation Theory. III (E. W. Cheney, ed.), Academic Press, New York, 1980, pp. 175-182. MR 602713 (82h:42026)
  • [7] -, A generalization of the ultraspherical polynomials, Studies in Pure Mathematics (P. Erdös, ed.), Birkhäuser, Basel, 1983, pp. 55-678. MR 820210 (87a:33015)
  • [8] -, Recurrence relations, continued fractions and orthogonal polynomials (to appear).
  • [9] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. (to appear). MR 783216 (87a:05023)
  • [10] F. V. Atkinson and W. N. Everitt, Orthogonal polynomials which satisfy second order differential equations (E. B. Christoffel, P. L. Butzer and F. Fehér, eds.), Birkhäuser, Basel, 1981, pp. 173-181. MR 661063 (83j:33008)
  • [11] W. N. Bailey, The generating function of Jacobi polynomials, J. London Math. Soc. 13 (1938), 8-12.
  • [12] -, Generalized hypergeometric series, Hafner, New York, 1972.
  • [13] D. Bressoud, Theta function identities and orthogonal polynomials, Analytic Number Theory (Proceedings, Philadelphia, Pa., 1980), Lecture Notes in Math., vol. 899, Springer-Verlag, Berlin, Heidelberg and New York, 1981. MR 654538 (83f:33009)
  • [14] T. S. Chihara, An introduction to orthogonal polynomials, Gordon & Breach, New York, 1978. MR 0481884 (58:1979)
  • [15] E. Feldheim, Sur les polynomes géneralisés de Legendre, Izv. Akad. Nauk SSSR Ser. Mat. 5 (1941), 241-248; Russian transl., ibid, 248-254. MR 0005173 (3:112e)
  • [16] G. Gasper and M. Rahman, Positivity of the Poisson kernel for the continuous $ q$-ultraspherical polynomials, SIAM J. Math. Anal. 14 (1983), 409-420. MR 688587 (84f:33008)
  • [17] I. J. Lanzewizky, Über die orthogonalität Fejér Szegöschen polynome, C. R. (Dokl.) Acad. Sci. URSS 31 (1941), 199-200. MR 0005172 (3:112d)
  • [18] P. Nevai, Orthogonal polynomials defined by a recurrence relation, Trans. Amer. Math. Soc. 250 (1979), 369-384. MR 530062 (80d:42011)
  • [19] L. J. Rogers, Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. 26 (1895), 15-32.
  • [20] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966. MR 0201688 (34:1570)
  • [21] G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1975.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33A45, 33A65, 42C05

Retrieve articles in all journals with MSC: 33A45, 33A65, 42C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0742411-6
Keywords: Sieved ultraspherical polynomials of first and second kind, continuous $ q$-ultraspherical polynomials, Fejér-Legendre polynomials, orthogonal polynomials, ultraspherical polynomials, Tchebycheff polynomials, recurrence relation, weight function, generating function, product linearization, connection coefficient
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society