Sieved ultraspherical polynomials

Authors:
Waleed Al-Salam, W. R. Allaway and Richard Askey

Journal:
Trans. Amer. Math. Soc. **284** (1984), 39-55

MSC:
Primary 33A45; Secondary 33A65, 42C05

DOI:
https://doi.org/10.1090/S0002-9947-1984-0742411-6

MathSciNet review:
742411

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The continuous -ultraspherical polynomials contain a number of important examples as limiting or special cases. One of these arose in Allaway's Ph.D. thesis. In a previous paper we solved a characterization problem essentially equivalent to Allaway's and showed that these polynomials arose from the -ultraspherical polynomials when approached a root of unity. A second class of such polynomials is found, and the recurrence relation and orthogonality relation are found for each of these polynomials. The orthogonality is interesting because the weight function has a finite number of zeros in . Generating functions and other formulas are also found.

**[1]**W. Al-Salam, Wm. R. Allaway and R. Askey,*A characterization of the continuous*-*ultraspherical polynomials*(to appear). MR**749641 (86a:33007)****[2]**Wm. R. Allaway,*The identification of a class of orthogonal polynomials*, Ph.D. thesis, University of Alberta, Canada, 1972.**[3]**G. E. Andrews,*The theory of partitions*, Addison-Wesley, Reading, Mass., 1977. MR**0557013 (58:27738)****[4]**R. Askey,*The*-*gamma and*-*beta functions*, Applicable Analysis**8**(1978), 125-141. MR**523950 (80h:33003)****[5]**-,*Ramanujan's extensions of the gamma and beta functions*, Amer. Math. Monthly**87**(1980), 346-359. MR**567718 (82g:01030)****[6]**R. Askey and M. Ismail,*The Rogers*-*ultraspherical polynomials*, Approximation Theory. III (E. W. Cheney, ed.), Academic Press, New York, 1980, pp. 175-182. MR**602713 (82h:42026)****[7]**-,*A generalization of the ultraspherical polynomials*, Studies in Pure Mathematics (P. Erdös, ed.), Birkhäuser, Basel, 1983, pp. 55-678. MR**820210 (87a:33015)****[8]**-,*Recurrence relations, continued fractions and orthogonal polynomials*(to appear).**[9]**R. Askey and J. Wilson,*Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials*, Mem. Amer. Math. Soc. (to appear). MR**783216 (87a:05023)****[10]**F. V. Atkinson and W. N. Everitt,*Orthogonal polynomials which satisfy second order differential equations*(E. B. Christoffel, P. L. Butzer and F. Fehér, eds.), Birkhäuser, Basel, 1981, pp. 173-181. MR**661063 (83j:33008)****[11]**W. N. Bailey,*The generating function of Jacobi polynomials*, J. London Math. Soc.**13**(1938), 8-12.**[12]**-,*Generalized hypergeometric series*, Hafner, New York, 1972.**[13]**D. Bressoud,*Theta function identities and orthogonal polynomials*, Analytic Number Theory (Proceedings, Philadelphia, Pa., 1980), Lecture Notes in Math., vol. 899, Springer-Verlag, Berlin, Heidelberg and New York, 1981. MR**654538 (83f:33009)****[14]**T. S. Chihara,*An introduction to orthogonal polynomials*, Gordon & Breach, New York, 1978. MR**0481884 (58:1979)****[15]**E. Feldheim,*Sur les polynomes géneralisés de Legendre*, Izv. Akad. Nauk SSSR Ser. Mat.**5**(1941), 241-248; Russian transl., ibid, 248-254. MR**0005173 (3:112e)****[16]**G. Gasper and M. Rahman,*Positivity of the Poisson kernel for the continuous*-*ultraspherical polynomials*, SIAM J. Math. Anal.**14**(1983), 409-420. MR**688587 (84f:33008)****[17]**I. J. Lanzewizky,*Über die orthogonalität Fejér Szegöschen polynome*, C. R. (Dokl.) Acad. Sci. URSS**31**(1941), 199-200. MR**0005172 (3:112d)****[18]**P. Nevai,*Orthogonal polynomials defined by a recurrence relation*, Trans. Amer. Math. Soc.**250**(1979), 369-384. MR**530062 (80d:42011)****[19]**L. J. Rogers,*Third memoir on the expansion of certain infinite products*, Proc. London Math. Soc.**26**(1895), 15-32.**[20]**L. J. Slater,*Generalized hypergeometric functions*, Cambridge Univ. Press, Cambridge, 1966. MR**0201688 (34:1570)****[21]**G. Szegö,*Orthogonal polynomials*, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1975.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
33A45,
33A65,
42C05

Retrieve articles in all journals with MSC: 33A45, 33A65, 42C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0742411-6

Keywords:
Sieved ultraspherical polynomials of first and second kind,
continuous -ultraspherical polynomials,
Fejér-Legendre polynomials,
orthogonal polynomials,
ultraspherical polynomials,
Tchebycheff polynomials,
recurrence relation,
weight function,
generating function,
product linearization,
connection coefficient

Article copyright:
© Copyright 1984
American Mathematical Society