Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Operators with $ C\sp{\ast} $-algebra generated by a unilateral shift


Authors: John B. Conway and Paul McGuire
Journal: Trans. Amer. Math. Soc. 284 (1984), 153-161
MSC: Primary 47B20; Secondary 47C15
DOI: https://doi.org/10.1090/S0002-9947-1984-0742417-7
MathSciNet review: 742417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ T$ is an operator on a Hilbert space $ \mathcal{H}$, this paper gives necessary and sufficient conditions on $ T$ such that $ {C^{\ast} }(T)$, the $ {C^{\ast} }$-algebra generated by $ T$, is generated by a unilateral shift of some multiplicity. This result is then specialized to the cases in which $ T$ is a hyponormal or subnormal operator. In particular, it is shown how to prove a recent conjecture of C. R. Putnam as a consequence of our result.


References [Enhancements On Off] (What's this?)

  • [1] C. A. Berger and B. I. Shaw, Self commutators of multicyclic hyponormal operators are trace class, Bull. Amer. Math. Soc. 79 (1973), 1193-1199. MR 0374972 (51:11168)
  • [2] L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $ {C^{\ast} }$-algebras, Proc. Conf. Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, Berlin and New York, pp. 58-128. MR 0380478 (52:1378)
  • [3] R. W. Carey and J. D. Pincus, An invariant for certain operator algebras, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1952-1956. MR 0344925 (49:9664)
  • [4] K. Clancey, Seminormal operators, Lecture Notes in Math., vol. 742, Springer-Verlag, Berlin and New York, 1979. MR 548170 (81c:47002)
  • [5] W. S. Clary, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), 88-90. MR 0390824 (52:11647)
  • [6] L. A. Coburn, The $ {C^{\ast}}$-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211-217. MR 0236720 (38:5015)
  • [7] J. B. Conway, On quasisimilarity for subnormal operators, Illinois J. Math. 24 (1980), 689-702. MR 586807 (83i:47031a)
  • [8] -, Subnormal operators, Research Notes in Math., vol. 51, Pitman Publishing, London, 1981. MR 634507 (83i:47030)
  • [9] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972. MR 0361893 (50:14335)
  • [10] W. F. Osgood, A Jordan curve of positive area, Trans. Amer. Math. Soc. 4 (1903), 197-112. MR 1500628
  • [11] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330. MR 0270193 (42:5085)
  • [12] -, The spectra of subnormal operators, Proc. Amer. Math. Soc. 28 (1971), 473-477. MR 0275215 (43:972)
  • [13] -, Hyponormal operators with minimal spectral area, Houston J. Math. 6 (1980), 135-139. MR 575921 (81g:47029)
  • [14] -, Singly generated hyponormal $ {C^{\ast}}$-algebras, preprint.
  • [15] M. Radjabalipour, Ranges of hyponormal operators, Illinois J. Math. 21 (1977), 70-75. MR 0448140 (56:6449)
  • [16] M. Raphael, Quasisimilarity and essential spectra for subnormal operators, Indiana Univ. Math. J. 31 (1982), 243-246. MR 648174 (83d:47031)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B20, 47C15

Retrieve articles in all journals with MSC: 47B20, 47C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0742417-7
Keywords: Hyponormal operator, $ {C^{\ast} }$-algebra, unilateral shift, subnormal operators
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society