Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the universal theory of classes of finite models


Author: S. Tulipani
Journal: Trans. Amer. Math. Soc. 284 (1984), 163-170
MSC: Primary 03C13; Secondary 03C05, 03C60
DOI: https://doi.org/10.1090/S0002-9947-1984-0742418-9
MathSciNet review: 742418
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: First order theories for which the truth of a universal sentence on their finite models implies the truth on all models are investigated. It is proved that an equational theory has such a property if and only if every finitely presented model is residually finite. The most common classes of algebraic structures are discussed.


References [Enhancements On Off] (What's this?)

  • [1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate Texts in Math., no. 13, Springer-Verlag, Berlin and New York, 1973. MR 1245487 (94i:16001)
  • [2] K. A. Baker, Equational classes of modular lattices, Pacific J. Math. 28 (1969), 9-15. MR 0244118 (39:5435)
  • [3] J. T. Baldwin, Review: Selected papers of Abraham Robinson. Volume 1, J. Symbolic Logic 47 (1982).
  • [4] S. Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Math., no. 78, Springer-Verlag, Berlin and New York, 1981. MR 648287 (83k:08001)
  • [5] C. C. Chang and H. J. Keisler, Model theory, Studies in Logic, North-Holland, Amsterdam, 1973.
  • [6] U. Felgner, The model theory of $ FC$-groups, Mathematical Logic in Latin America (Arruda, Chuaqui and da Costa, Eds.), North-Holland, Amsterdam, 1980. MR 573947 (81m:03045)
  • [7] K. R. Goodearl, Ring theory, Pure and Appl. Math. 33, Marcel Dekker, New York, 1976. MR 0429962 (55:2970)
  • [8] G. Grätzer, General lattice theory, Mathematische Reihe 52, Birkhäuser-Verlag, Basel, 1978. MR 504338 (80c:06001a)
  • [9] -, Universal algebra, 2nd ed., Springer-Verlag, Berlin and New York, 1979. MR 538623 (80g:08001)
  • [10] D. K. Haley, Equational compactness in rings, Lecture Notes in Math., vol. 745, Springer-Verlag, Berlin and New York, 1979. MR 549030 (81e:16036)
  • [11] G. Higman, A finitely related group with an isomorphic proper factor group, J. London Math. Soc. 26 (1951), 59-61. MR 0038347 (12:390b)
  • [12] -, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951), 61-64. MR 0038348 (12:390c)
  • [13] Iwasawa Kenkiti, Einige Sätze über freie Gruppen, Proc. Imp. Acad. Tokyo 19 (1943), 272-274. MR 0014089 (7:239d)
  • [14] B. Jónsson, Algebras whose congruence lattice are distributive, Math. Scand. 21 (1967), 110-121. MR 0237402 (38:5689)
  • [15] D. W. Kueker, A note on the elementary theory of finite abelian groups, Algebra Universalis 3 (1973), 156-159. MR 0347584 (50:87)
  • [16] A. I. Mal'cev, The metamathematics of algebraic systems, Collected Papers 1936-1967, North-Holland, Amsterdam, 1971. MR 0349383 (50:1877)
  • [17] -, Algebraic systems, Die Grundlehren der Math. Wissenshaften, vol. 192, Springer-Verlag, Berlin and New York, 1973. MR 0349384 (50:1878)
  • [18] R. S. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. No. 70 (1967). MR 0217056 (36:151)
  • [19] A. Robinson, On axiomatic systems which possess finite models, Methods 3 (1951), 140-149.
  • [20] W. Taylor, Residually small varieties, Algebra Universalis 2 (1972), 33-53. MR 0314726 (47:3278)
  • [21] O. Zariski and P. Samuel, Commutative algebra, Vol. 1, Graduate Texts in Math., No. 28, Springer-Verlag, Berlin and New York, 1977. MR 0384768 (52:5641)
  • [22] S. Burris and H. Werner, Sheaf constructions and their elementary properties, Trans. Amer. Math. Soc. 248 (1979), 269-309. MR 522263 (82d:03049)
  • [23] R. McKenzie, On spectra, and the negative solution of the decision problem for identities having a finite nontrivial model, J. Symbolic Logic 40 (1975). MR 0376323 (51:12499)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03C13, 03C05, 03C60

Retrieve articles in all journals with MSC: 03C13, 03C05, 03C60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0742418-9
Keywords: Universal sentence, finite models, residually finite, finitely presented
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society