Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the universal theory of classes of finite models

Author: S. Tulipani
Journal: Trans. Amer. Math. Soc. 284 (1984), 163-170
MSC: Primary 03C13; Secondary 03C05, 03C60
MathSciNet review: 742418
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: First order theories for which the truth of a universal sentence on their finite models implies the truth on all models are investigated. It is proved that an equational theory has such a property if and only if every finitely presented model is residually finite. The most common classes of algebraic structures are discussed.

References [Enhancements On Off] (What's this?)

  • [1] Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487
  • [2] Kirby A. Baker, Equational classes of modular lattices, Pacific J. Math. 28 (1969), 9–15. MR 0244118
  • [3] J. T. Baldwin, Review: Selected papers of Abraham Robinson. Volume 1, J. Symbolic Logic 47 (1982).
  • [4] Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR 648287
  • [5] C. C. Chang and H. J. Keisler, Model theory, Studies in Logic, North-Holland, Amsterdam, 1973.
  • [6] Ulrich Felgner, The model theory of FC-groups, Mathematical logic in Latin America (Proc. IV Latin Amer. Sympos. Math. Logic, Santiago, 1978) Stud. Logic Foundations Math., vol. 99, North-Holland, Amsterdam-New York, 1980, pp. 163–190. MR 573947
  • [7] K. R. Goodearl, Ring theory, Marcel Dekker, Inc., New York-Basel, 1976. Nonsingular rings and modules; Pure and Applied Mathematics, No. 33. MR 0429962
  • [8] George Grätzer, General lattice theory, Birkhäuser Verlag, Basel-Stuttgart, 1978. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 52. MR 504338
  • [9] George Grätzer, Universal algebra, 2nd ed., Springer-Verlag, New York-Heidelberg, 1979. MR 538623
  • [10] David K. Haley, Equational compactness in rings, Lecture Notes in Mathematics, vol. 745, Springer, Berlin, 1979. With applications to the theory of topological rings. MR 549030
  • [11] Graham Higman, A finitely related group with an isomorphic proper factor group, J. London Math. Soc. 26 (1951), 59–61. MR 0038347
  • [12] Graham Higman, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951), 61–64. MR 0038348
  • [13] Kenkiti Iwasawa, Einige Sätze über freie Gruppen, Proc. Imp. Acad. Tokyo 19 (1943), 272–274 (German). MR 0014089
  • [14] Bjarni Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121 (1968). MR 0237402
  • [15] D. W. Kueker, A note on the elementary theory of finite abelian groups, Algebra Universalis 3 (1973), 156–159. MR 0347584
  • [16] Anatoliĭ Ivanovič Mal′cev, The metamathematics of algebraic systems. Collected papers: 1936–1967, North-Holland Publishing Co., Amsterdam-London, 1971. Translated, edited, and provided with supplementary notes by Benjamin Franklin Wells, III; Studies in Logic and the Foundations of Mathematics, Vol. 66. MR 0349383
  • [17] A. I. Mal′cev, Algebraic systems, Springer-Verlag, New York-Heidelberg, 1973. Posthumous edition, edited by D. Smirnov and M. Taĭclin; Translated from the Russian by B. D. Seckler and A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 192. MR 0349384
  • [18] R. S. Pierce, Modules over commutative regular rings, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR 0217056
  • [19] A. Robinson, On axiomatic systems which possess finite models, Methods 3 (1951), 140-149.
  • [20] Walter Taylor, Residually small varieties, Algebra Universalis 2 (1972), 33–53. MR 0314726
  • [21] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. 1, Springer-Verlag, New York-Heidelberg-Berlin, 1975. With the cooperation of I. S. Cohen; Corrected reprinting of the 1958 edition; Graduate Texts in Mathematics, No. 28. MR 0384768
  • [22] Stanley Burris and Heinrich Werner, Sheaf constructions and their elementary properties, Trans. Amer. Math. Soc. 248 (1979), no. 2, 269–309. MR 522263, 10.1090/S0002-9947-1979-0522263-8
  • [23] Ralph McKenzie, On spectra, and the negative solution of the decision problem for identities having a finite nontrivial model, J. Symbolic Logic 40 (1975), 186–196. MR 0376323

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03C13, 03C05, 03C60

Retrieve articles in all journals with MSC: 03C13, 03C05, 03C60

Additional Information

Keywords: Universal sentence, finite models, residually finite, finitely presented
Article copyright: © Copyright 1984 American Mathematical Society