The theory of ordered abelian groups does not have the independence property

Authors:
Y. Gurevich and P. H. Schmitt

Journal:
Trans. Amer. Math. Soc. **284** (1984), 171-182

MSC:
Primary 03C60; Secondary 06F20

MathSciNet review:
742419

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that no complete theory of ordered abelian groups has the independence property, thus answering a question by B. Poizat. The main tool is a result contained in the doctoral dissertation of Yuri Gurevich and also in P. H. Schmitt's *Elementary properties of ordered abelian groups*, which basically transforms statements on ordered abelian groups into statements on coloured chains. We also prove that every -type in the theory of coloured chains has at most coheirs, thereby strengthening a result by B. Poizat.

**[1]**F. Delon,*A counterexample concerning the number of coheirs*, private communication by B. Poizat.**[2]**-,*Types sur*, Théories Stables,*année*, IHP, Paris, 1981.**[3]**Jean-Louis Duret,*Les corps pseudo-finis ont la propriété d’indépendance*, C. R. Acad. Sci. Paris Sér. A-B**290**(1980), no. 21, A981–A983 (French, with English summary). MR**584282****[4]**S. Feferman and R. L. Vaught,*The first order properties of products of algebraic systems*, Fund. Math.**47**(1959), 57–103. MR**0108455****[5]**Y. Gurevich,*The decision problem for some algebraic theories*, Doctoral Dissertation, Sverdlovsk, U.S.S.R., 1968.**[6]**-,*Elementary properties of ordered abelian groups*, Trans. Amer. Math. Soc.**46**(1965), 165-192.**[7]**Yuri Gurevich,*Expanded theory of ordered abelian groups*, Ann. Math. Logic**12**(1977), no. 2, 193–228. MR**0498071****[8]**H. Jerome Keisler,*The stability function of a theory*, J. Symbolic Logic**43**(1978), no. 3, 481–486. MR**503784**, 10.2307/2273523**[9]**H. Jerome Keisler,*Six classes of theories*, J. Austral. Math. Soc. Ser. A**21**(1976), no. 3, 257–266. MR**0409168****[10]**Daniel Lascar and Bruno Poizat,*An introduction to forking*, J. Symbolic Logic**44**(1979), no. 3, 330–350. MR**540665**, 10.2307/2273127**[11]**M. Parigot,*Théories d'arbres*, Doctoral Dissertation, Paris, 1981.**[12]**Bruno Poizat,*Théories instables*, J. Symbolic Logic**46**(1981), no. 3, 513–522 (French). MR**627903**, 10.2307/2273753**[13]**Matatyahu Rubin,*Theories of linear order*, Israel J. Math.**17**(1974), 392–443. MR**0349377****[14]**P. H. Schmitt,*Model theory of ordered abelian groups*, Habilitationsschrift, Heidelberg, 1982.**[15]**-,*Elementary properties of ordered abelian groups*(to appear).**[16]**Saharon Shelah,*Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory*, Ann. Math. Logic**3**(1971), no. 3, 271–362. MR**0317926**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
03C60,
06F20

Retrieve articles in all journals with MSC: 03C60, 06F20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0742419-0

Article copyright:
© Copyright 1984
American Mathematical Society