Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Points of continuity for semigroup actions


Author: Jimmie D. Lawson
Journal: Trans. Amer. Math. Soc. 284 (1984), 183-202
MSC: Primary 54H15; Secondary 22A15
DOI: https://doi.org/10.1090/S0002-9947-1984-0742420-7
MathSciNet review: 742420
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to provide a more unified approach to questions involving the existence of points of joint continuity in separately continuous semigroup actions by deriving a small number of general principles which suffice to deduce previously derived results and generalizations thereof. The first major result gives sufficient conditions for a point to be a point of joint continuity in a general setting of "migrants", a useful symmetric generalization of semigroup actions. Results concerning actions of semigroups with group-like properties follow. In the latter part of the paper the notion of a subordinate point is introduced and joint continuity at subordinate points for various settings is proved. Finally, these results are applied to linear actions on locally convex spaces.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Berglund, Weakly almost periodic flows (to appear).
  • [2] J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly periodic functions, Lecture Notes in Math., vol. 42, Springer-Verlag, Heidelberg, 1967. MR 0223483 (36:6531)
  • [3] J. P. R. Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), 455-461. MR 612739 (82h:54012)
  • [4] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. I, Math. Surveys, vol. 7, Amer. Math. Soc., Providence, R.I., 1961. MR 0132791 (24:A2627)
  • [5] H. A. M. Dzinotyiweyi, Weak and norm continuity of semigroup actions on normal linear spaces, Quart. J. Math. Oxford Ser. (2) 33 (1982), 85-90. MR 689853 (85c:22004)
  • [6] R. Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-126. MR 0088674 (19:561b)
  • [7] G. Hansel and J. P. Troallic, Points de continuite a gauche d'une action de semigroupe, Semigroup Forum 26 (1983), 205-214. MR 694019 (85d:22008)
  • [8] D. Helmer, Joint continuity of affine semigroup actions, Semigroup Forum 21 (1980), 153-165. MR 590748 (82a:22002)
  • [9] -, Continuity of semigroup actions, Semigroup Forum 23 (1981), 153-188. MR 641995 (83a:22002)
  • [10] K. H. Hofmann and P. S. Mostert, Elements of compact semigroups, Merrill, Columbus, Ohio, 1966. MR 0209387 (35:285)
  • [11] P. Kenderov, Dense strong continuity of pointwise continuous mappings, Pacific J. Math. 89 (1980), 111-130. MR 596921 (82d:46034)
  • [12] J. D. Lawson, Joint continuity in semitopological semigroups, Illinois J. Math. 18 (1974), 175-185. MR 0335674 (49:454)
  • [13] -, Additional notes on continuity in semitopological semigroups, Semigroup Forum 12 (1976), 165-280. MR 0405381 (53:9175)
  • [14] J. D. Lawson and B. Madison, On congruences and cones, Math. Z. 120 (1971), 18-24. MR 0285659 (44:2877)
  • [15] R. T. Moore, Measurable, continuous and smooth vectors for semigroups and group representations, Mem. Amer. Math. Soc. No. 78 (1968). MR 0229091 (37:4669)
  • [16] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531. MR 0370466 (51:6693)
  • [17] W. Ruppert, Notes on compact semigroups with identity, Semigroup Forum 14 (1977), 199-234. MR 0486279 (58:6045a)
  • [18] -, On semitopological compactification of non-abelian groups, Illnois J. Math. 26 (1982), 388-411.
  • [19] -, A structural theory of compact semitopological semigroups (to appear).
  • [20] C. Ryll-Nardzweski, On fixed points of semigroups of endomorphisms of linear spaces, (Proc. 5th Berkley Sympos. Math. Stat. and Prob., 1965), vol. II, Part 1, Univ. of California Press, Berkeley, 1966.
  • [21] J. Saint Raymond, Jeux topologiques et espaces de Namioka, Proc. Amer. Math. Soc. 87 (1983), 499-504. MR 684646 (83m:54060)
  • [22] H. H. Schaefer, Topological vector spaces, Springer-Verlag, Heidelberg, 1971. MR 0342978 (49:7722)
  • [23] G. L. G. Sleijpen, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc. (3) 37 (1978), 75-97. MR 0499939 (58:17682a)
  • [24] -, Emaciated sets and measures with continuous translations, Proc. London Math. Soc. (3) 37 (1978), 98-119. MR 0499940 (58:17682b)
  • [25] -, The action of a semigroup on a space of bounded Radon measures, Semigroup Forum 23 (1981), 137-157. MR 641994 (83e:22005)
  • [26] J.-P. Troallic, Espaces fonctionnels et théorèmes de I. Namioka, Bull. Soc. Math. France 107 (1979), 127-137. MR 545168 (81d:54035)
  • [27] -, Semigroupes semitopologiques et presqueperiodicite, (Proc. Conf. Semigroups, Oberwolfach 1981), Lecture Notes in Math., vol. 998, Springer-Verlag, Heidelberg, 1983, pp. 239-251.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54H15, 22A15

Retrieve articles in all journals with MSC: 54H15, 22A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0742420-7
Keywords: Transformation semigroup, separable continuity, point of joint continuity, linear action
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society