Fixed point sets of metric and nonmetric spaces

Authors:
John R. Martin and William Weiss

Journal:
Trans. Amer. Math. Soc. **284** (1984), 337-353

MSC:
Primary 54H25; Secondary 03E35, 54A35

DOI:
https://doi.org/10.1090/S0002-9947-1984-0742428-1

MathSciNet review:
742428

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A space is said to have the complete invariance property CIP if every nonempty closed subset of is the fixed point set of some self-mapping of . It is shown that connected subgroups of the plane and compact groups need not have CIP, and CIP need not be preserved by self-products of Peano continua, nonmetric manifolds or 0-dimensional spaces. Sufficient conditions are given for an infinite product of spaces to have CIP. In particular, an uncountable product of real lines, circles or two-point spaces has CIP. Examples are given which contrast the behavior of CIP in the nonmetric and metric cases, and examples of spaces are given where the existence of CIP is neither provable nor refutable with the usual axioms of set theory.

**[1]**J. Barwise (ed.),*Handbook of mathematical logic*, North-Holland, Amsterdam, 1977. MR**516928 (81d:03037)****[2]**H. Cook,*Continua which admit only the identity mapping onto nondegenerate subcontinua*, Fund. Math.**60**(1967), 241-249. MR**0220249 (36:3315)****[3]**K. J. Devlin,*Fundamentals of contemporary set theory*, Springer-Verlag, Berlin, 1979. MR**541746 (80j:04001)****[4]**R. Engelking,*General topology*, Monogr. Mat., Vol. 60, PWN, Warsaw, 1977. MR**0500780 (58:18316b)****[5]**Boju Jiang and H. Schirmer,*Fixed point sets of continuous selfmaps on polyhedra*, Fixed Point Theory Proc. (Sherbrooke, 1980), Lecture Notes in Math., vol. 866, Springer-Verlag, Berlin, 1981, pp. 171-177. MR**643006 (83a:55004)****[6]**F. B. Jones,*Connected and disconnected plane sets and the functional equation*, Bull. Amer. Math. Soc.**48**(1942), 115-120. MR**0005906 (3:229e)****[7]**I. Juhász and W. Weiss,*Martin's axiom and normality*, Gen. Topology Appl.**9**(1978), 263-274. MR**510908 (80a:54028)****[8]**K. Kunen and J. Vaughan (eds.),*Handbook of set-theoretic topology*, North-Holland, Amsterdam (to appear). MR**776619 (85k:54001)****[9]**J. R. Martin and S. B. Nadler, Jr.,*Examples and questions in the theory of fixed point sets*, Canad. J. Math.**31**(1979), 1017-1032. MR**546955 (80m:54059)****[10]**J. R. Martin and E. D. Tymchatyn,*Fixed point sets of*-*dimensional Peano continua*, Pacific J. Math.**89**(1980), 147-149. MR**596925 (81m:54078)****[11]**J. R. Martin, L. G. Oversteegen and E. D. Tymchatyn,*Fixed point sets of products and cones*, Pacific J. Math.**101**(1982), 133-139. MR**671845 (83j:54025)****[12]**H. Schirmer,*Fixed point sets of continuous selfmaps*, Fixed Point Theory Proc. (Sherbrooke, 1980), Lecture Notes in Math., vol. 866, Springer-Verlag, Berlin, 1981, pp. 417-428. MR**643019 (84h:54045)****[13]**F. D. Tall,*Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems*, Ph.D. Thesis, University of Wisconsin, Madison, 1969.**[14]**L. E. Ward, Jr.,*Fixed point sets*, Pacific J. Math.**47**(1973), 553-565. MR**0367963 (51:4205)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54H25,
03E35,
54A35

Retrieve articles in all journals with MSC: 54H25, 03E35, 54A35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0742428-1

Keywords:
Fixed point set,
complete invariance property,
(Cartesian) product space,
topological group,
continuum hypothesis,
Martin's Axiom

Article copyright:
© Copyright 1984
American Mathematical Society