Infinite crossed products and group-graded rings

Author:
D. S. Passman

Journal:
Trans. Amer. Math. Soc. **284** (1984), 707-727

MSC:
Primary 16A27; Secondary 16A03, 20C07

MathSciNet review:
743740

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we precisely determine when a crossed product is semiprime or prime. Indeed we show that these conditions ultimately depend upon the analogous conditions for the crossed products of the finite subgroups of and upon the interrelationship between the normalizers of these subgroups and the ideal structure of . The proof offered here is combinatorial in nature, using the -methods, and is entirely self-contained. Furthermore, since the argument applies equally well to strongly -graded rings, we have opted to work in this more general context.

**[1]**Gorô Azumaya,*New foundation of the theory of simple rings*, Proc. Japan Acad.**22**(1946), no. 11, 325–332. MR**0042387****[2]**M. Cohen and S. Montgomery,*Group-graded rings, smash products, and group actions*, Trans. Amer. Math. Soc.**282**(1984), no. 1, 237–258. MR**728711**, 10.1090/S0002-9947-1984-0728711-4**[3]**Miriam Cohen and Louis H. Rowen,*Group graded rings*, Comm. Algebra**11**(1983), no. 11, 1253–1270. MR**696990**, 10.1080/00927878308822904**[4]**Ian G. Connell,*On the group ring*, Canad. J. Math.**15**(1963), 650–685. MR**0153705****[5]**Everett C. Dade,*Group-graded rings and modules*, Math. Z.**174**(1980), no. 3, 241–262. MR**593823**, 10.1007/BF01161413**[6]**Joe W. Fisher and Susan Montgomery,*Semiprime skew group rings*, J. Algebra**52**(1978), no. 1, 241–247. MR**0480616****[7]**Robert B. Howlett and I. Martin Isaacs,*On groups of central type*, Math. Z.**179**(1982), no. 4, 555–569. MR**652860**, 10.1007/BF01215066**[8]**Martin Lorenz and D. S. Passman,*Prime ideals in crossed products of finite groups*, Israel J. Math.**33**(1979), no. 2, 89–132. MR**571248**, 10.1007/BF02760553**[9]**Susan Montgomery,*Outer automorphisms of semi-prime rings*, J. London Math. Soc. (2)**18**(1978), no. 2, 209–220. MR**509936**, 10.1112/jlms/s2-18.2.209**[10]**Susan Montgomery and D. S. Passman,*Crossed products over prime rings*, Israel J. Math.**31**(1978), no. 3-4, 224–256. MR**516150**, 10.1007/BF02761494**[11]**Constantin Năstăsescu,*Strongly graded rings of finite groups*, Comm. Algebra**11**(1983), no. 10, 1033–1071. MR**700723**, 10.1080/00927872.1983.10487600**[12]**C. Năstăsescu and F. Van Oystaeyen,*On strongly graded rings and crossed products*, Comm. Algebra**10**(1982), no. 19, 2085–2106. MR**675345**, 10.1080/00927878208822824**[13]**D. S. Passman,*Nil ideals in group rings*, Michigan Math. J.**9**(1962), 375–384. MR**0144930****[14]**D. S. Passman,*Radicals of twisted group rings*, Proc. London Math. Soc. (3)**20**(1970), 409–437. MR**0271246****[15]**-,*The algebraic structure of group rings*, Interscience, New York, 1977.**[16]**D. S. Passman,*Crossed products over semiprime rings*, Houston J. Math.**4**(1978), no. 4, 583–592. MR**523616****[17]**D. S. Passman,*It’s essentially Maschke’s theorem*, Rocky Mountain J. Math.**13**(1983), no. 1, 37–54. MR**692575**, 10.1216/RMJ-1983-13-1-37**[18]**D. S. Passman,*Semiprime and prime crossed products*, J. Algebra**83**(1983), no. 1, 158–178. MR**710592**, 10.1016/0021-8693(83)90142-4**[19]**Declan Quinn,*Group-graded rings and duality*, Trans. Amer. Math. Soc.**292**(1985), no. 1, 155–167. MR**805958**, 10.1090/S0002-9947-1985-0805958-0

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A27,
16A03,
20C07

Retrieve articles in all journals with MSC: 16A27, 16A03, 20C07

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1984-0743740-2

Article copyright:
© Copyright 1984
American Mathematical Society