Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some applications of the topological characterizations of the sigma-compact spaces $ l\sp{2}\sb{f}$ and $ \Sigma $


Authors: Doug Curtis, Tadeusz Dobrowolski and Jerzy Mogilski
Journal: Trans. Amer. Math. Soc. 284 (1984), 837-846
MSC: Primary 54F65; Secondary 54B10, 54C25, 54D45, 57N20
DOI: https://doi.org/10.1090/S0002-9947-1984-0743748-7
MathSciNet review: 743748
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use a technique involving skeletoids in $ \sigma $-compact metric ARs to obtain some new examples of spaces homeomorphic to the $ \sigma $-compact linear spaces $ l_f^2$ and $ \Sigma $. For example, we show that (1) every $ {\aleph_0}$-dimensional metric linear space is homeomorphic to $ l_f^2$; (2) every $ \sigma $-compact metric linear space which is an AR and which contains an infinite-dimensional compact convex subset is homeomorphic to $ \Sigma $; and (3) every weak product of a sequence of $ \sigma $-compact metric ARs which contain Hilbert cubes is homeomorphic to $ \Sigma $.


References [Enhancements On Off] (What's this?)

  • [1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383. MR 0214041 (35:4893)
  • [2] C. Bessaga and A. Pełczynski, The estimated extension theorem, homogeneous collections and skeletons, and their application to the topological classification of linear metric spaces and convex sets, Fund. Math. 69 (1970), 153-190. MR 0273347 (42:8227)
  • [3] -, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
  • [4] C. Bessaga, Central points of convex sets, Colloq. Math. 37 (1977), 59-68. MR 0464243 (57:4177)
  • [5] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-426. MR 0283828 (44:1058)
  • [6] -, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R.I., 1976. MR 0423357 (54:11336)
  • [7] D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl. (to appear). MR 804034 (87d:57014)
  • [8] T. Dobrowolski and J. Mogilski, Sigma compact locally convex metric linear spaces universal for compacta are homeomorphic, Proc. Amer. Math. Soc. 85 (1982), 653-658. MR 660623 (83i:57006)
  • [9] T. Dobrowolski and H. Torunczyk, Separable complete ANRs admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235. MR 623731 (83a:58007)
  • [10] W. E. Haver, Locally contractible spaces that are absolute retracts, Proc. Amer. Math. Soc. 40 (1973), 280-286. MR 0331311 (48:9645)
  • [11] R. Heisey and H. Torunczyk, On the topology of direct limits of ANRs, Pacific J. Math. 93 (1981), 307-312. MR 623566 (82k:57010)
  • [12] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, Mich. 1965. MR 0181977 (31:6202)
  • [13] J. Mogilski, Characterizing the topology of infinite-dimensional $ \sigma $-compact manifolds, Proc. Amer. Math. Soc. (to appear). MR 749902 (85m:57012)
  • [14] H. Torunczyk, Skeletonized sets in complete metric spaces and homeomorphisms of the Hilbert cube, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 119-126. MR 0264602 (41:9194)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54F65, 54B10, 54C25, 54D45, 57N20

Retrieve articles in all journals with MSC: 54F65, 54B10, 54C25, 54D45, 57N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0743748-7
Keywords: $ \sigma $-compact metric ARs, skeletoids in $ \sigma $-compact spaces, $ Z$-sets, convex subsets of metric linear spaces, weak products
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society