Some applications of the topological characterizations of the sigmacompact spaces and
Authors:
Doug Curtis, Tadeusz Dobrowolski and Jerzy Mogilski
Journal:
Trans. Amer. Math. Soc. 284 (1984), 837846
MSC:
Primary 54F65; Secondary 54B10, 54C25, 54D45, 57N20
MathSciNet review:
743748
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We use a technique involving skeletoids in compact metric ARs to obtain some new examples of spaces homeomorphic to the compact linear spaces and . For example, we show that (1) every dimensional metric linear space is homeomorphic to ; (2) every compact metric linear space which is an AR and which contains an infinitedimensional compact convex subset is homeomorphic to ; and (3) every weak product of a sequence of compact metric ARs which contain Hilbert cubes is homeomorphic to .
 [1]
R.
D. Anderson, On topological infinite deficiency, Michigan
Math. J. 14 (1967), 365–383. MR 0214041
(35 #4893)
 [2]
C.
Bessaga and A.
Pełczyński, The estimated extension theorem,
homogeneous collections and skeletons, and their applications to the
topological classification of linear metric spaces and convex sets,
Fund. Math. 69 (1970), 153–190. MR 0273347
(42 #8227)
 [3]
, Selected topics in infinitedimensional topology, PWN, Warsaw, 1975.
 [4]
C.
Bessaga, Central points of convex sets, Colloq. Math.
37 (1977), no. 1, 59–68. MR 0464243
(57 #4177)
 [5]
T.
A. Chapman, Dense sigmacompact subsets of
infinitedimensional manifolds, Trans. Amer.
Math. Soc. 154
(1971), 399–426. MR 0283828
(44 #1058), http://dx.doi.org/10.1090/S00029947197102838287
 [6]
T.
A. Chapman, Lectures on Hilbert cube manifolds, American
Mathematical Society, Providence, R. I., 1976. Expository lectures from the
CBMS Regional Conference held at Guilford College, October 1115, 1975;
Regional Conference Series in Mathematics, No. 28. MR 0423357
(54 #11336)
 [7]
D.
W. Curtis, Boundary sets in the Hilbert cube, Topology Appl.
20 (1985), no. 3, 201–221. MR 804034
(87d:57014), http://dx.doi.org/10.1016/01668641(85)900896
 [8]
T.
Dobrowolski and J.
Mogilski, Sigmacompact locally convex metric
linear spaces universal for compacta are homeomorphic, Proc. Amer. Math. Soc. 85 (1982), no. 4, 653–658. MR 660623
(83i:57006), http://dx.doi.org/10.1090/S00029939198206606230
 [9]
T.
Dobrowolski and H.
Toruńczyk, Separable complete ANRs admitting a group
structure are Hilbert manifolds, Topology Appl. 12
(1981), no. 3, 229–235. MR 623731
(83a:58007), http://dx.doi.org/10.1016/01668641(81)900018
 [10]
William
E. Haver, Locally contractible spaces that are
absolute neighborhood retracts, Proc. Amer.
Math. Soc. 40
(1973), 280–284. MR 0331311
(48 #9645), http://dx.doi.org/10.1090/S0002993919730331311X
 [11]
R.
E. Heisey and H.
Toruńczyk, On the topology of direct limits of ANRs,
Pacific J. Math. 93 (1981), no. 2, 307–312. MR 623566
(82k:57010)
 [12]
Szetsen
Hu, Theory of retracts, Wayne State University Press, Detroit,
1965. MR
0181977 (31 #6202)
 [13]
Jerzy
Mogilski, Characterizing the topology of
infinitedimensional 𝜎compact manifolds, Proc. Amer. Math. Soc. 92 (1984), no. 1, 111–118. MR 749902
(85m:57012), http://dx.doi.org/10.1090/S00029939198407499028
 [14]
H.
Toruńczyk, Skeletonized sets in complete metric spaces and
homeomorphisms of the Hilbert cube, Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 18 (1970),
119–126 (English, with Loose Russian summary). MR 0264602
(41 #9194)
 [1]
 R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365383. MR 0214041 (35:4893)
 [2]
 C. Bessaga and A. Pełczynski, The estimated extension theorem, homogeneous collections and skeletons, and their application to the topological classification of linear metric spaces and convex sets, Fund. Math. 69 (1970), 153190. MR 0273347 (42:8227)
 [3]
 , Selected topics in infinitedimensional topology, PWN, Warsaw, 1975.
 [4]
 C. Bessaga, Central points of convex sets, Colloq. Math. 37 (1977), 5968. MR 0464243 (57:4177)
 [5]
 T. A. Chapman, Dense sigmacompact subsets of infinitedimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399426. MR 0283828 (44:1058)
 [6]
 , Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R.I., 1976. MR 0423357 (54:11336)
 [7]
 D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl. (to appear). MR 804034 (87d:57014)
 [8]
 T. Dobrowolski and J. Mogilski, Sigma compact locally convex metric linear spaces universal for compacta are homeomorphic, Proc. Amer. Math. Soc. 85 (1982), 653658. MR 660623 (83i:57006)
 [9]
 T. Dobrowolski and H. Torunczyk, Separable complete ANRs admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229235. MR 623731 (83a:58007)
 [10]
 W. E. Haver, Locally contractible spaces that are absolute retracts, Proc. Amer. Math. Soc. 40 (1973), 280286. MR 0331311 (48:9645)
 [11]
 R. Heisey and H. Torunczyk, On the topology of direct limits of ANRs, Pacific J. Math. 93 (1981), 307312. MR 623566 (82k:57010)
 [12]
 S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, Mich. 1965. MR 0181977 (31:6202)
 [13]
 J. Mogilski, Characterizing the topology of infinitedimensional compact manifolds, Proc. Amer. Math. Soc. (to appear). MR 749902 (85m:57012)
 [14]
 H. Torunczyk, Skeletonized sets in complete metric spaces and homeomorphisms of the Hilbert cube, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 119126. MR 0264602 (41:9194)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
54F65,
54B10,
54C25,
54D45,
57N20
Retrieve articles in all journals
with MSC:
54F65,
54B10,
54C25,
54D45,
57N20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198407437487
PII:
S 00029947(1984)07437487
Keywords:
compact metric ARs,
skeletoids in compact spaces,
sets,
convex subsets of metric linear spaces,
weak products
Article copyright:
© Copyright 1984
American Mathematical Society
