Some applications of the topological characterizations of the sigma-compact spaces and

Authors:
Doug Curtis, Tadeusz Dobrowolski and Jerzy Mogilski

Journal:
Trans. Amer. Math. Soc. **284** (1984), 837-846

MSC:
Primary 54F65; Secondary 54B10, 54C25, 54D45, 57N20

DOI:
https://doi.org/10.1090/S0002-9947-1984-0743748-7

MathSciNet review:
743748

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use a technique involving skeletoids in -compact metric ARs to obtain some new examples of spaces homeomorphic to the -compact linear spaces and . For example, we show that (1) every -dimensional metric linear space is homeomorphic to ; (2) every -compact metric linear space which is an AR and which contains an infinite-dimensional compact convex subset is homeomorphic to ; and (3) every weak product of a sequence of -compact metric ARs which contain Hilbert cubes is homeomorphic to .

**[1]**R. D. Anderson,*On topological infinite deficiency*, Michigan Math. J.**14**(1967), 365–383. MR**0214041****[2]**C. Bessaga and A. Pełczyński,*The estimated extension theorem, homogeneous collections and skeletons, and their applications to the topological classification of linear metric spaces and convex sets*, Fund. Math.**69**(1970), 153–190. MR**0273347**, https://doi.org/10.4064/fm-69-2-153-190**[3]**-,*Selected topics in infinite-dimensional topology*, PWN, Warsaw, 1975.**[4]**C. Bessaga,*Central points of convex sets*, Colloq. Math.**37**(1977), no. 1, 59–68. MR**0464243**, https://doi.org/10.4064/cm-37-1-59-68**[5]**T. A. Chapman,*Dense sigma-compact subsets of infinite-dimensional manifolds*, Trans. Amer. Math. Soc.**154**(1971), 399–426. MR**0283828**, https://doi.org/10.1090/S0002-9947-1971-0283828-7**[6]**T. A. Chapman,*Lectures on Hilbert cube manifolds*, American Mathematical Society, Providence, R. I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975; Regional Conference Series in Mathematics, No. 28. MR**0423357****[7]**D. W. Curtis,*Boundary sets in the Hilbert cube*, Topology Appl.**20**(1985), no. 3, 201–221. MR**804034**, https://doi.org/10.1016/0166-8641(85)90089-6**[8]**T. Dobrowolski and J. Mogilski,*Sigma-compact locally convex metric linear spaces universal for compacta are homeomorphic*, Proc. Amer. Math. Soc.**85**(1982), no. 4, 653–658. MR**660623**, https://doi.org/10.1090/S0002-9939-1982-0660623-0**[9]**T. Dobrowolski and H. Toruńczyk,*Separable complete ANRs admitting a group structure are Hilbert manifolds*, Topology Appl.**12**(1981), no. 3, 229–235. MR**623731**, https://doi.org/10.1016/0166-8641(81)90001-8**[10]**William E. Haver,*Locally contractible spaces that are absolute neighborhood retracts*, Proc. Amer. Math. Soc.**40**(1973), 280–284. MR**0331311**, https://doi.org/10.1090/S0002-9939-1973-0331311-X**[11]**R. E. Heisey and H. Toruńczyk,*On the topology of direct limits of ANRs*, Pacific J. Math.**93**(1981), no. 2, 307–312. MR**623566****[12]**Sze-tsen Hu,*Theory of retracts*, Wayne State University Press, Detroit, 1965. MR**0181977****[13]**Jerzy Mogilski,*Characterizing the topology of infinite-dimensional 𝜎-compact manifolds*, Proc. Amer. Math. Soc.**92**(1984), no. 1, 111–118. MR**749902**, https://doi.org/10.1090/S0002-9939-1984-0749902-8**[14]**H. Toruńczyk,*Skeletonized sets in complete metric spaces and homeomorphisms of the Hilbert cube*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**18**(1970), 119–126 (English, with Loose Russian summary). MR**0264602**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54F65,
54B10,
54C25,
54D45,
57N20

Retrieve articles in all journals with MSC: 54F65, 54B10, 54C25, 54D45, 57N20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0743748-7

Keywords:
-compact metric ARs,
skeletoids in -compact spaces,
-sets,
convex subsets of metric linear spaces,
weak products

Article copyright:
© Copyright 1984
American Mathematical Society