Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the spectrum of $ C\sb{0}$-semigroups


Author: Jan Prüss
Journal: Trans. Amer. Math. Soc. 284 (1984), 847-857
MSC: Primary 47D05; Secondary 34G10
DOI: https://doi.org/10.1090/S0002-9947-1984-0743749-9
MathSciNet review: 743749
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give characterizations of the spectrum of a $ {C_0}$-semigroup $ {e^{At}}$ in terms of certain solution properties of the differential equation $ (\ast)\;u^{\prime} = Au + f$ and, in case $ X$ is a Hilbert space, also in terms of properties of $ {(\lambda - A)^{ - 1}}$. We give several applications of these results including a study of the existence of dichotomic projections for $ (\ast)$.


References [Enhancements On Off] (What's this?)

  • [1] L. Amerio and G. Prouse, Almost-periodic functions and functional equations, Van Nostrand Reinhold, London, 1971. MR 0275061 (43:819)
  • [2] W. Arendt and G. Greiner, The spectral mapping theorem for one-parameter groups of positive operators on $ {C_0}( \overline{\underline{X}} )$, Semesterbericht der Univ. Tübingen, 1982/83.
  • [3] W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Math., vol. 629, Springer-Verlag, Heidelberg, 1978. MR 0481196 (58:1332)
  • [4] R. F. Curtain and A. J. Pritchard, Infinite dimensional linear systems theory, Lecture Notes in Control and Information Sci., vol. 8, Springer-Verlag, Heidelberg, 1978. MR 516812 (80h:93002)
  • [5] J. L. Daleckii and M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Mono., vol. 43, Amer. Math. Soc., Providence, R.I., 1974. MR 0352639 (50:5126)
  • [6] E. B. Davies, One parameter semigroups, London Math. Soc. Mono., vol. 15, Academic Press, New York, 1980. MR 591851 (82i:47060)
  • [7] C. Foias and B. Sz.-Nagy, Harmonic analysis of operators in Hilbert space, North-Holland, Amsterdam, 1970. MR 0275191 (43:948)
  • [8] L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc. 236 (1978), 385-394. MR 0461206 (57:1191)
  • [9] G. Greiner, J. Voigt and M. Wolff, On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory 5 (1981), 245-256. MR 617977 (82h:47039)
  • [10] J. Hale, Functional differential equations, Appl. Math. Sci., vol. 3, Springer-Verlag, Heidelberg, 1971. MR 0466837 (57:6711)
  • [11] A. Haraux, Nonlinear evolution equations, Lecture Notes in Math., vol. 841, Springer-Verlag, Heidelberg, 1981. MR 610796 (83d:47066)
  • [12] E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 0089373 (19:664d)
  • [13] A. J. Pritchard and J. Zabczyk, Stability and stabilizability of infinite dimensional systems, SIAM Review 23 (1981). MR 605439 (82f:93063)
  • [14] J. Prüss, Equilibrium solutions of age-specific population dynamics of several species, J. Math. Biology 11 (1981), 65-84. MR 617881 (83a:92056)
  • [15] M. Slemrod, Asymptotic behaviour of $ {C_0}$-semigroups as determined by the spectrum of the generator, Indiana Math. J. 25 (1976). MR 0451034 (56:9321)
  • [16] G. F. Webb, Theory of nonlinear age-dependent population dynamics, preprint. MR 772205 (86e:92032)
  • [17] J. Zabczyk, A note on $ {C_0}$-semigroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 23 (1975), 895-898. MR 0383144 (52:4025)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D05, 34G10

Retrieve articles in all journals with MSC: 47D05, 34G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0743749-9
Keywords: Semigroups, spectrum, periodic solutions, dichotomic projections
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society