Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Closed timelike geodesics

Author: Gregory J. Galloway
Journal: Trans. Amer. Math. Soc. 285 (1984), 379-388
MSC: Primary 53C50; Secondary 53C22
MathSciNet review: 748844
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that every stable free $ t$-homotopy class of closed timelike curves in a compact Lorentzian manifold contains a longest curve which must be a closed timelike geodesic. This result enables one to obtain a Lorentzian analogue of a classical theorem of Synge. A criterion for stability is presented, and a theorem of Tipler is derived as a special case of the result stated above.

References [Enhancements On Off] (What's this?)

  • [1] André Avez, Formule de Gauss-Bonnet-Chern en métrique de signature quelconque., C. R. Acad. Sci. Paris 255 (1962), 2049–2051 (French). MR 0145462
  • [2] -, Essais de géométrie Riemannienne hyperbolique globale, Applications à la relativité générale, Ann. Inst. Fourier (Grenoble) 132, (1963), 105-190.
  • [3] John K. Beem and Paul E. Ehrlich, Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Math., vol. 67, Marcel Dekker, Inc., New York, 1981. MR 619853
  • [4] E. Cartan, Lecons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1928.
  • [5] Shiing-shen Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Brasil. Ci. 35 (1963), 17–26. MR 0155261
  • [6] J. Hadamard, Les surfaces à courbures opposées et leur lignes géodesiques, J. Math. Pures. Appl. 4 (1896), 27-73.
  • [7] William S. Massey, Algebraic topology: an introduction, Springer-Verlag, New York-Heidelberg, 1977. Reprint of the 1967 edition; Graduate Texts in Mathematics, Vol. 56. MR 0448331
  • [8] R. Penrose, Structure of space-time, Battelle Rencontres (C. M. De Witt and J. A. Wheeler, eds.), Benjamin, New York, 1968.
  • [9] -, Techniques of differential topology in relativity, SIAM, Philadelphia, Pa., 1972.
  • [10] M. Spivak, A comprehensive introduction to differential geometry, Publish or Perish, Berkeley, Calif., 1979.
  • [11] J. L. Synge, On the connectivity of spaces of positive curvature, Quart J. Math. Oxford Ser. (2) 7 (1936), 316-320.
  • [12] Frank J. Tipler, Existence of closed timelike geodesics in Lorentz spaces, Proc. Amer. Math. Soc. 76 (1979), no. 1, 145–147. MR 534406,

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C50, 53C22

Retrieve articles in all journals with MSC: 53C50, 53C22

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society