On the realization of invariant subgroups of

Author:
A. Zabrodsky

Journal:
Trans. Amer. Math. Soc. **285** (1984), 467-496

MSC:
Primary 55Q52; Secondary 55P45, 55S45

DOI:
https://doi.org/10.1090/S0002-9947-1984-0752487-8

MathSciNet review:
752487

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a prime and a self map. Let be a multiplicatively closed subset of the algebraic closure of . Denote by the set of characteristic values of lying in . It is proved that under certain conditions is realizable by a pair : There exist a space , maps and so that is injective and . This theorem yields, among others, examples of spaces whose cohomology rings are polynomial algebras.

**[A]**Allan Clark and John Ewing,*The realization of polynomial algebras as cohomology rings*, Pacific J. Math.**50**(1974), 425–434. MR**0367979****[G]**George Cooke,*Constructing spaces with interesting 𝑍/𝑝-cohomology via 𝜖-actions on loop spaces*, Amer. J. Math.**101**(1979), no. 3, 515–542. MR**533189**, https://doi.org/10.2307/2373796**1.**George E. Cooke and Larry Smith,*𝑀𝑜𝑑𝑝 decompositions of 𝑐𝑜𝐻-spaces and applications*, Math. Z.**157**(1977), no. 2, 155–177. MR**0478145**, https://doi.org/10.1007/BF01215149**[P]**Peter Freyd,*Stable homotopy*, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 121–172. MR**0211399****[E]**Eric M. Friedlander,*Exceptional isogenies and the classifying spaces of simple Lie groups*, Ann. Math. (2)**101**(1975), 510–520. MR**0391078****[J]**John R. Harper,*𝐻-spaces with torsion*, Mem. Amer. Math. Soc.**22**(1979), no. 223, viii+72. MR**546361**, https://doi.org/10.1090/memo/0223**[G]**Nishida,*On a result of Sullivan and the**decomposition of Lie groups*, Mimeographed Notes, Research Inst. for Math. Sci., Kyoto Univ., 1971.**[D]**Daniel Quillen,*On the cohomology and 𝐾-theory of the general linear groups over a finite field*, Ann. of Math. (2)**96**(1972), 552–586. MR**0315016**, https://doi.org/10.2307/1970825**[J]**James Dillon Stasheff,*The 𝑚𝑜𝑑𝑝 decomposition of Lie groups*, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Springer, Berlin, 1974, pp. 142–149. Lecture Notes in Math., Vol. 418. MR**0375294****[D]**Sullivan,*Geometric topology*, Mimeographed Notes, M.I.T., 1971.**[C]**Clarence Wilkerson,*Genus and cancellation*, Topology**14**(1975), 29–36. MR**0367995**, https://doi.org/10.1016/0040-9383(75)90032-4**2.**Clarence Wilkerson,*Self-maps of classifying spaces*, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Springer, Berlin, 1974, pp. 150–157. Lecture Notes in Math., Vol. 418. MR**0383444****[A]**Zabrodsky, 1.*Endomorphisms in the homotopy category*, Mimeographed Notes.**3.**Alexander Zabrodsky,*𝑝 equivalences and homotopy type*, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Springer, Berlin, 1974, pp. 161–171. Lecture Notes in Math., Vol. 418. MR**0377867**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55Q52,
55P45,
55S45

Retrieve articles in all journals with MSC: 55Q52, 55P45, 55S45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0752487-8

Article copyright:
© Copyright 1984
American Mathematical Society