Embeddings of Harish-Chandra modules, -homology and the composition series problem: the case of real rank one

Author:
David H. Collingwood

Journal:
Trans. Amer. Math. Soc. **285** (1984), 565-579

MSC:
Primary 22E45; Secondary 20G05

DOI:
https://doi.org/10.1090/S0002-9947-1984-0752491-X

MathSciNet review:
752491

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a connected semisimple matrix group of real rank one. Fix a minimal parabolic subgroup and form the (normalized) principal series representations . In the case of regular infinitesimal character, we explicitly determine (in terms of Langlands' classification) all irreducible submodules and quotients of . As a corollary, all embeddings of an irreducible Harish-Chandra module into principal series are computed. The number of such embeddings is always less than or equal to three. These computations are equivalent to the determination of zero -homology.

**[1]**W. Casselman,*Jacquet modules for real reductive groups*, Proc. Internat. Congr. Math., Helsinki, 1978, pp. 557-563. MR**562655 (83h:22025)****[2]**D. Collingwood,*Harish-Chandra modules with the unique embedding property*, Trans. Amer. Math. Soc.**281**(1984), 1-48. MR**719657 (84m:22020)****[3]**H. Hecht and W. Schmid,*Characters, asymptotics and*-*homology of Harish-Chandra modules*, Acta Math.**151**(1983), 49-151. MR**716371 (84k:22026)****[4]**S. Helgason,*Differential geometry, Lie groups and symmetric spaces*, Academic Press, New York, 1978. MR**514561 (80k:53081)****[5]**A. Knapp.*Weyl group of a cuspidal parabolic*, Ann. Sci. École Norm. Sup. (4)**8**(1975). MR**0376963 (51:13138)****[6]**H. Kraljević*On the representations of the group*, Trans. Amer. Math. Soc.**221**(1976), MR**0409725 (53:13477)****[7]**H. Kraljević and W. B. Silva,*Composition factors of the principal series representations of the group*, Trans. Amer. Math. Soc.**262**(1980), 447-471. MR**586728 (82c:22015)****[8]**-,*Composition factors of the principal series representations of the group*, unpublished notes.**[9]**D. Miličić,*Asympotic behavior of the matrix coefficients of the discrete series*, Duke Math. J.**44**(1977), 59-88.**[10]**W. Schmid, Lecture at the Institute for Advanced Study, Princeton, N. J., February 10, 1976.**[11]**W. Silva,*The embedddings of the discrete series in the principal series for semisimple Lie groups of real rank one*, Trans. Amer. Math. Soc.**261**(1980), 303-368. MR**580893 (82b:22022)****[12]**B. Speh and D. Vogan,*Reducibility of generalized principal series representations*, Acta Math.**145**(1980), 227-299. MR**590291 (82c:22018)****[13]**D. Vogan,*Irreducible characters of semisimple Lie groups*. I, Duke Math. J.**46**(1979), 61-108. MR**523602 (80g:22016)****[14]**-,*Irreducible characters of semisimple Lie groups*. II:*The Kazhdan-Lusztig conjectures*, Duke Math. J.**46**(1979), 805-859. MR**552528 (81f:22024)****[15]**-,*Irreducible characters of semisimple Lie groups*. III:*Proof of the Kazhdan-Lusztig conjectures*, Invent. Math.**71**(1983), 381-417. MR**689650 (84h:22036)****[16]**-,*Irreducible characters of semisimple Lie groups*. IV:*Character multiplicity duality*, Duke Math. J.**49**(1982), 943-1073. MR**683010 (84h:22037)****[17]**-,*Representations of real reductive Lie groups*, Progress in Mathematics, Birkhäuser, Basel, 1981.**[18]**D. Zelobenko,*Description of the quasi-simple irreducible representations of the groups**and*, Math. USSR-Izv.**11**(1977), 31-50.**[19]**G. Zuckerman,*Tensor products of finite and infinite dimensional representations of semisimple Lie groups*, Ann. of Math. (2)**106**(1977), 295-308. MR**0457636 (56:15841)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22E45,
20G05

Retrieve articles in all journals with MSC: 22E45, 20G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0752491-X

Keywords:
Representations of semisimple Lie groups,
embedding theorems,
composition series problem,
Kazhdan-Lusztig conjectures

Article copyright:
© Copyright 1984
American Mathematical Society