Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Boundedness of fractional operators on $ L\sp{p}$ spaces with different weights


Authors: Eleonor Harboure, Roberto A. Macías and Carlos Segovia
Journal: Trans. Amer. Math. Soc. 285 (1984), 629-647
MSC: Primary 26D10; Secondary 42B25, 47B38
DOI: https://doi.org/10.1090/S0002-9947-1984-0752495-7
MathSciNet review: 752495
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {T_\alpha }$ be either the fractional integral operator $ \smallint f(y)\vert x - y{\vert^{\alpha - n}}\; dy$, or the fractional maximal operator $ \sup \left\{ {{r^{\alpha - n}}{\smallint_{\vert x - y\vert < r}}\vert f(y)\vert dy:\,r > 0} \right\}$. Given a weight $ w$ (resp. $ \upsilon $), necessary and sufficient conditions are given for the existence of a nontrivial weight $ \upsilon $ (resp. $ w$) such that $ {(\smallint \vert{T_\alpha }f{\vert^q}\upsilon \;dx)^{1/q}} \leqslant {(\smallint\vert f{\vert^p}w\;dx)^{1/p}}$ holds. Weak type substitutes in limiting cases are considered.


References [Enhancements On Off] (What's this?)

  • [1] L. Carleson and P. W. Jones, Weighted norm inequalities and a theorem of Koosis (preprint).
  • [2] C. Cortazar, M. Elgueta and R. Macáas, A strong $ 1$-$ 1$ weighted norm inequality for the fractional integral (preprint).
  • [3] M. Cotlar, Condiciones de continuidad de operadores potenciales $ y$ de Hilbert, Cursos y Seminarios, Univ. de Buenos Aires, 1959. MR 0116190 (22:6985)
  • [4] A. E. Gatto and C. E. Gutierrez, On weighted norm inequalities for the maximal function (preprint). MR 728196 (85f:42031)
  • [5] M. de Guzman, Real variables methods in Fourier analysis, Math. Studies, No. 46, North-Holland, Amsterdam, 1981; MR 83j #42019. MR 596037 (83j:42019)
  • [6] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. MR 47 #794. MR 0312232 (47:794)
  • [7] J. L. Rubio de Francia, Boundedness of maximal functions and singular integrals in weighted $ {L^p}$ spaces, Proc. Amer. Math. Soc. 83 (1981), 673-679; MR 83a #42018. MR 630035 (83a:42018)
  • [8] -, Weighted norm inequalities and vector valued inequalities, Harmonic Analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., vol. 908, Springer, Berlin and New York, 1982, pp. 86-101. MR 83h #42025. MR 654181 (83h:42025)
  • [9] E. T. Sawyer, Two weight norm inequalities for certain maximal and integral operators Harmonic Analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., vol. 908, Springer, Berlin and New York, 1982, pp. 102-127. MR 83k #42020b. MR 654182 (83k:42020b)
  • [10] G. V. Welland, Weighted norm inequalities for fractional integrals, Proc. Amer. Math. Soc. 51 (1975), 143-148. MR 52 #8785. MR 0369641 (51:5873)
  • [11] A. Zygmund, Trigonometric series, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26D10, 42B25, 47B38

Retrieve articles in all journals with MSC: 26D10, 42B25, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0752495-7
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society