Infinite-to-one codes and Markov measures

Authors:
Mike Boyle and Selim Tuncel

Journal:
Trans. Amer. Math. Soc. **285** (1984), 657-684

MSC:
Primary 28D99; Secondary 54H20, 58F11

DOI:
https://doi.org/10.1090/S0002-9947-1984-0752497-0

MathSciNet review:
752497

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the structure of infinite-to-one continuous codes between subshifts of finite type and the behaviour of Markov measures under such codes. We show that if an infinite-to-one code lifts one Markov measure to a Markov measure, then it lifts each Markov measure to uncountably many Markov measures and the fibre over each Markov measure is isomorphic to any other fibre. Calling such a code Markovian, we characterize Markovian codes through pressure. We show that a simple condition on periodic points, necessary for the existence of a code between two subshifts of finite type, is sufficient to construct a Markovian code. Several classes of Markovian codes are studied in the process of proving, illustrating and providing contrast to the main results. A number of examples and counterexamples are given; in particular, we give a continuous code between two Bernoulli shifts such that the defining vector of the image is not a clustering of the defining vector of the domain.

**[1]**R. L. Adler and B. Marcus,*Topological entropy and equivalence of dynamical systems*, Mem. Amer. Math. Soc.**219**(1979). MR**533691 (83h:28027)****[2]**R. Bowen,*Equilibrium states and the ergodic theory of Anosov diffeomorphisms*, Lecture Notes in Math., vol. 470, Springer-Verlag, New York, 1975. MR**0442989 (56:1364)****[3]**M. Boyle,*Lower entropy factors of sofic systems*, Ergodic Theory Dynamical Systems (to appear). MR**753922 (85m:54014)****[4]**E. M. Coven and M. E. Paul,*Endomorphisms of irreducible subshifts of finite type*, Math. Systems Theory**8**(1974), 167-175. MR**0383378 (52:4259)****[5]**F. Hofbauer,*Examples for the nonuniqueness of the equilibrium state*, Trans. Amer. Math. Soc.**228**(1977), 223-241. MR**0435352 (55:8312)****[6]**R. B. Israel,*Convexity in the theory of lattice gasses*, Princeton Univ. Press, Princeton, N.J., 1979. MR**517873 (80i:82002)****[7]**A. del Junco, M. Keane, B. Kitchens, B. Marcus and L. Swanson,*Continuous homomorphisms of Bernoulli schemes*, Ergodic Theory and Dynamical Systems. I, Progr. Math., Vol. 10, Birkhäuser, Boston, Basel and Stuttgart, 1981, pp. 91-111. MR**633763 (84h:28026)****[8]**B. Kitchens, Ph.D. thesis, University of North Carolina, 1981.**[9]**-,*An invariant for continuous factors of Markov shifts*, Proc. Amer. Math. Soc.**83**(1981), 825-828. MR**630029 (82k:28021)****[10]**-,*Linear algebra and subshifts of finite type*, Proceedings of the Conference on Modern Analysis and Probability (Yale University, 1982), in honor of S. Kakutani, Contemp. Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1984. MR**737405 (85m:28022)****[11]**W. Krieger,*On the subsystems of topological Markov chains*, Ergodic Theory Dynamical Systems**2**(1982), 195-202. MR**693975 (85b:28020)****[12]**-,*On certain notions of equivalence for topological Markov chains*, preprint 1982.**[13]**D. Lind,*Entropies and factorizations of topological Markov shifts*, Bull. Amer. Math. Soc. (N.S.)**9**(1983), 219-222. MR**707961 (84j:54010)****[14]**B. Marcus,*Sofic systems and encoding data*, preprint 1982. MR**794434 (86m:94021)****[15]**B. Marcus, K. Petersen and S. Williams,*Transmission rates and factors of Markov chains*, Proceedings of the Conference on Modern Analysis and Probability (Yale University, 1982), in honor of S. Kakutani, Contemp. Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1984. MR**737408 (85j:28020)****[16]**W. Parry,*A finitary classification of topological Markov chains and sofic systems*, Bull. London Math. Soc.**11**(1979), 170-176. MR**0482707 (58:2763)****[17]**W. Parry and S. Tuncel,*On the classification of Markov chains by finite equivalence*, Ergodic Theory Dynamical Systems**1**(1981), 303-335. MR**662472 (83j:28020)****[18]**-,*On the stochastic and topological structure of Markov chains*, Bull. London Math. Soc.**14**(1982), 16-27. MR**642417 (84i:28024)****[19]**-,*Classification problems in ergodic theory*, London Math. Soc. Lecture Note Ser., Vol. 67, Cambridge Univ. Press, Cambridge, 1982. MR**666871 (84g:28024)****[20]**S. Tuncel,*Conditional pressure and coding*, Israel J. Math.**39**(1981), 101-112. MR**617293 (82j:28012)****[21]**P. Walters,*An introduction to ergodic theory*, Graduate Texts in Math., No. 79, Springer-Verlag, New York, 1982. MR**648108 (84e:28017)****[22]**M. Denker, C. Grillenberger and K. Sigmund,*Ergodic theory on compact spaces*, Lecture Notes in Math., Vol. 527, Springer-Verlag, New York, 1976. MR**0457675 (56:15879)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28D99,
54H20,
58F11

Retrieve articles in all journals with MSC: 28D99, 54H20, 58F11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0752497-0

Article copyright:
© Copyright 1984
American Mathematical Society