Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The interfaces of one-dimensional flows in porous media


Author: Juan L. Vázquez
Journal: Trans. Amer. Math. Soc. 285 (1984), 717-737
MSC: Primary 35R35; Secondary 76S05
DOI: https://doi.org/10.1090/S0002-9947-1984-0752500-8
MathSciNet review: 752500
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The solutions of the equation $ {u_t} = {({u^m})_{x\,x}}$ for $ x \in {\mathbf{R}},0 < t < T,m > 1$, where $ u(x,0)$ is a nonnegative Borel measure that vanishes for $ x > 0$ (and satisfies a growth condition at $ - \infty $), exhibit a finite, monotone, continuous interface $ x = \zeta (t)$ that bounds to the right the region where $ u > 0$. We perform a detailed study of $ \zeta$: initial behaviour, waiting time, behaviour as $ t \to \infty $. For certain initial data the solutions blow up in a finite time $ {T^{\ast}}$: we calculate $ {T^{\ast}}$ in terms of $ u(x,0)$ and describe the behaviour of $ \zeta $ as $ t\, \uparrow \,{T^{\ast}}$.


References [Enhancements On Off] (What's this?)

  • [1] D. G. Aronson, Regularity properties of flows through porous media: the interface, Arch. Rational Mech. Anal. 37 (1970), 1-10. MR 0255996 (41:656)
  • [2] -, Regularity properties of flows through porous media: a counterexample, SIAM J. Appl. Math. 19 (1970), 299-307. MR 0265774 (42:683)
  • [3] D. G. Aronson and Ph. Bénilan, Régularité des solutions de l'équation des millieux poreux dans $ {{\mathbf{R}}^n}$, C.R. Acad. Sci. Paris 288 (1979), 103-105.
  • [4] D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1983), 351-366. MR 712265 (85c:35042)
  • [5] D. G. Aronson, L. A. Caffarelli and S. Kamin, How an initially stationary interface begins to move in porous medium flow, SIAM J. Math. Anal. 14 (1983), 639-658. MR 704481 (84g:35084)
  • [6] D. G. Aronson, L. A. Caffarelli and J. L. Vazquez, Interfaces with a corner point in one-dimensional porous medium flow, preprint. MR 792397 (86h:35070)
  • [7] G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Mekh. 16 (1952), 67-78. (Russian) MR 0046217 (13:700a)
  • [8] Ph. Bénilan and M. G. Crandall, The continuous dependence on $ \phi $ of the solutions of $ {u_t} - \Delta \,\phi \,(u) = 0$, Indiana Univ. Math. J. 30 (1981), 161-177. MR 604277 (83d:35071)
  • [9] Ph. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porous medium equation in $ {{\mathbf{R}}^n}$ under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), 51-87. MR 726106 (86b:35084)
  • [10] L. A. Caffarelli and A. Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math. 101 (1979), 1193-1218. MR 548877 (80k:76072)
  • [11] B. E. J. Dahlberg and C. E. Kenig, Non-negative solutions of the porous medium equation, Comm. Partial Differential Equations (to appear). MR 741215 (85j:35099)
  • [12] B. H. Gilding and L. A. Peletier, On a class of similarity solutions of the porous media equation, J. Math. Anal. Appl. 55 (1976), 351-364. MR 0436751 (55:9691a)
  • [13] -, On a class of similarity solutions of the porous media equation. II, J. Math. Anal. Appl. 57 (1977), 522-538. MR 0436752 (55:9691b)
  • [14] A. S. Kalashnikov, the Cauchy problem in the class of increasing functions for equations of unsteady filtration type, Vestnik Moskov. Univ. Ser. VI Mat. Mekh. 6 (1963), 17-27. (Russian) MR 0164145 (29:1444)
  • [15] A. A. Lacey, J. R. Ockendon and A. B. Tayler, 'Waiting time' solutions of a nonlinear duffusion equation, SIAM J. Appl. Math. 42 (1982), 1252-1264. MR 678215 (84f:80008)
  • [16] B. F. Knerr, The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), 381-415. MR 0492856 (58:11917)
  • [17] O. A. Oleinik, A. S. Kalashnikov and Czhou Yui Lin, The Cauchy problem and boundary problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 667-704. (Russian) MR 0099834 (20:6271)
  • [18] L. A. Peletier, A necessary and sufficient condition for the existence of an interface in flows through porous media, Arch. Rational Mech. Anal. 56 (1974), 183-190. MR 0417572 (54:5622)
  • [19] P. E. Sacks, Continuity of solutions of a singular parabolic equation, Nonlinear Anal. 7 (1983), 387-409. MR 696738 (84d:35081)
  • [20] J. L. Vazquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), 507-527. MR 694373 (84h:35014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35R35, 76S05

Retrieve articles in all journals with MSC: 35R35, 76S05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0752500-8
Keywords: Flows in porous media, interfaces, blow-up time, waiting time, asymptotic behaviour
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society