The interfaces of one-dimensional flows in porous media

Author:
Juan L. Vázquez

Journal:
Trans. Amer. Math. Soc. **285** (1984), 717-737

MSC:
Primary 35R35; Secondary 76S05

DOI:
https://doi.org/10.1090/S0002-9947-1984-0752500-8

MathSciNet review:
752500

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The solutions of the equation for , where is a nonnegative Borel measure that vanishes for (and satisfies a growth condition at ), exhibit a finite, monotone, continuous interface that bounds to the right the region where . We perform a detailed study of : initial behaviour, waiting time, behaviour as . For certain initial data the solutions blow up in a finite time : we calculate in terms of and describe the behaviour of as .

**[1]**D. G. Aronson,*Regularity properties of flows through porous media*:*the interface*, Arch. Rational Mech. Anal.**37**(1970), 1-10. MR**0255996 (41:656)****[2]**-,*Regularity properties of flows through porous media*:*a counterexample*, SIAM J. Appl. Math.**19**(1970), 299-307. MR**0265774 (42:683)****[3]**D. G. Aronson and Ph. Bénilan,*Régularité des solutions de l'équation des millieux poreux dans*, C.R. Acad. Sci. Paris**288**(1979), 103-105.**[4]**D. G. Aronson and L. A. Caffarelli,*The initial trace of a solution of the porous medium equation*, Trans. Amer. Math. Soc.**280**(1983), 351-366. MR**712265 (85c:35042)****[5]**D. G. Aronson, L. A. Caffarelli and S. Kamin,*How an initially stationary interface begins to move in porous medium flow*, SIAM J. Math. Anal.**14**(1983), 639-658. MR**704481 (84g:35084)****[6]**D. G. Aronson, L. A. Caffarelli and J. L. Vazquez,*Interfaces with a corner point in one-dimensional porous medium flow*, preprint. MR**792397 (86h:35070)****[7]**G. I. Barenblatt,*On some unsteady motions of a liquid or a gas in a porous medium*, Prikl. Mat. Mekh.**16**(1952), 67-78. (Russian) MR**0046217 (13:700a)****[8]**Ph. Bénilan and M. G. Crandall,*The continuous dependence on**of the solutions of*, Indiana Univ. Math. J.**30**(1981), 161-177. MR**604277 (83d:35071)****[9]**Ph. Bénilan, M. G. Crandall and M. Pierre,*Solutions of the porous medium equation in**under optimal conditions on initial values*, Indiana Univ. Math. J.**33**(1984), 51-87. MR**726106 (86b:35084)****[10]**L. A. Caffarelli and A. Friedman,*Regularity of the free boundary for the one-dimensional flow of gas in a porous medium*, Amer. J. Math.**101**(1979), 1193-1218. MR**548877 (80k:76072)****[11]**B. E. J. Dahlberg and C. E. Kenig,*Non-negative solutions of the porous medium equation*, Comm. Partial Differential Equations (to appear). MR**741215 (85j:35099)****[12]**B. H. Gilding and L. A. Peletier,*On a class of similarity solutions of the porous media equation*, J. Math. Anal. Appl.**55**(1976), 351-364. MR**0436751 (55:9691a)****[13]**-,*On a class of similarity solutions of the porous media equation*. II, J. Math. Anal. Appl.**57**(1977), 522-538. MR**0436752 (55:9691b)****[14]**A. S. Kalashnikov,*the Cauchy problem in the class of increasing functions for equations of unsteady filtration type*, Vestnik Moskov. Univ. Ser. VI Mat. Mekh.**6**(1963), 17-27. (Russian) MR**0164145 (29:1444)****[15]**A. A. Lacey, J. R. Ockendon and A. B. Tayler,*'Waiting time' solutions of a nonlinear duffusion equation*, SIAM J. Appl. Math.**42**(1982), 1252-1264. MR**678215 (84f:80008)****[16]**B. F. Knerr,*The porous medium equation in one dimension*, Trans. Amer. Math. Soc.**234**(1977), 381-415. MR**0492856 (58:11917)****[17]**O. A. Oleinik, A. S. Kalashnikov and Czhou Yui Lin,*The Cauchy problem and boundary problems for equations of the type of nonstationary filtration*, Izv. Akad. Nauk SSSR Ser. Mat.**22**(1958), 667-704. (Russian) MR**0099834 (20:6271)****[18]**L. A. Peletier,*A necessary and sufficient condition for the existence of an interface in flows through porous media*, Arch. Rational Mech. Anal.**56**(1974), 183-190. MR**0417572 (54:5622)****[19]**P. E. Sacks,*Continuity of solutions of a singular parabolic equation*, Nonlinear Anal.**7**(1983), 387-409. MR**696738 (84d:35081)****[20]**J. L. Vazquez,*Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium*, Trans. Amer. Math. Soc.**277**(1983), 507-527. MR**694373 (84h:35014)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35R35,
76S05

Retrieve articles in all journals with MSC: 35R35, 76S05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0752500-8

Keywords:
Flows in porous media,
interfaces,
blow-up time,
waiting time,
asymptotic behaviour

Article copyright:
© Copyright 1984
American Mathematical Society